TagDisplay.MVBA

(Calling MDL functions from VBA)

MicroStation MVBA is continually evolving and may not currently have a particular functionality a developer may need. One way to get around any limitation is to utilize MDL or window’s MFC (Microsoft Foundation Classes) functions. This is a common approach and is an acceptable workaround in the VBA community. The MVBA.TagDisplay.mvba is a MVBA / MDL hybrid example that illustrates how to call into a MicroStation shared library to accomplish a task of toggling the display of a tag element on and off. (If one finds such limitations, please submit a change request to Bentley Technical support for consideration of having any missing functionality incorporated into the SDK.)

[image: image1.png]
MicroStation Shared Library

To be able to use your MDL code in VBA is to create a MicroStation Shared Library (MSL) that has your functionality in it. An MDL shared library is just an MDL application with symbols exported and published. In this example the functions to modify the MSElementDscr, tagDisplay() can be found in this library I called myAPI.MSL. To create the library is no different then creating an MDL application. You will need to link in any needed libraries, include header files and function definition files (FDFs) just as you would in an MDL application. The only difference will be in your make file, The dynamic link specification (DLS) will need to be linked. Once you compiled the MDL code into a MSL you will want to place this file in the ..Bentley\Program\MicroStation\mdlsys\asneeded directory.

Dynamic Link Specification

A Dynamic Link Specification (DLS) object file is included in the link step to specify the symbols that are to be exported. The symbols would be the function that you want to export. In the make file, use the -e option to specify that the DLS object file specifies symbols that are being exported. In this example we have, -e$(mdlLibs)$(appName).dlo

It specifies either an MDL shared library or DLM that is to be used by the application being linked. For further information please see the MDL help.

The MDL Function

The first step is to consider is what you need to accomplish and what is needed to be passed to the MDL function to accomplish the task. In this example we want to pass a pointer to the MSelementDescr that contains the tag element that we want to change and a flag to turn the display attribute on or off. The tagDisplay function below illustrates how to toggle the display attribute on the MSelementDescr.

/*--+
|
| name tagDisplay
|
| author BSI 07/2002
|
+--*/
Public int tagDisplay
(
MSElementDescr *tagElmDescrP, // <=> Tag element to change display.
int state // => On OR Off, TRUE = On, FLASE = Off, -1 = Current State
)
 {
 UShort tagProps = 0;
 int status = SUCCESS;
 TagValue value;
 boolean displayable, createTag;

 createTag = FALSE;

 if (!tagElmDescrP)
 return ERROR;

 /*
 // Extract the tag specification, tag value, and displayable flag.
 // I have extracted the tag value because I want to check the data
 // type of the tag to determine whether or not it should be
 // displayed. For example, I don't want to display binary data.
 //
 // If I did not extract the value here, I could have also called
 // mdlTag_getTagDef() to get the tag's type from the tag definition.
 */
 if (SUCCESS != mdlTag_extract (
 NULL, /* <= origin of associated element */
 NULL, /* <= snap point */
 NULL, /* <= tag specification */
 &displayable, /* <= TRUE for displayable tag */
 &value, /* <= value for the tag */
 NULL, /* <= target element's assocation id */
 NULL, /* <= offset */
 NULL, /* <= size for the text */
 NULL, /* <= rotation matrix */
 NULL, /* <= text parameters */
 &tagElmDescrP->el, /* => tag element */
 MASTERFILE)) /* => file number for the tag */
 {
 return ERROR;
 }

 if (state == -1)
 status = displayable;
 else
 {
 /*
 // Note:
 // The only tag property that is stored with the tag element is
 // the display flag. Therefore, there is no need to retrieve the
 // existing property mask for the tag definition using
 // mdlTag_getTagDef() before modifying the tag properties.
 // When I recreate the tag using mdlTag_create(), I can simply
 // pass the display flag for the property parameter.
 */

 // If the tag is NOT currently displayed and the user
 // wants to turn ON the display then (display toggle is ON)
 if (state == TRUE)
 /* Turn ON the display of the flag */
 tagProps = ~TAG_PROP_DISPOFF;

 // Else if the tag is currently displayed and the user wants to
 // turn the display OFF then (display toggle is OFF)
 else
 /* Turn OFF the display of this tag */
 tagProps = TAG_PROP_DISPOFF;

 createTag = TRUE;

 /***
 //
 // When the value parameter is returned from mdlTag_extract(),
 // MicroStation has allocated memory for the stringVal and binaryVal
 // members of the TagValue structure. You are responsible for
 // freeing this memory.
 //
 **/
 switch (value.type)
 {
 case MS_TAGTYPE_CHAR:
 {
 /* Free the memory allocated by mdlTag_extract() */
 free(value.val.stringVal);

 break;
 }
 case MS_TAGTYPE_BINARY:
 {

 /* Free the memory allocated by mdlTag_extract() */
 free(value.val.binaryVal);

 /*
 // Do not change the display flag for the binary type since
 // the data is not readable anyway
 */
 createTag = FALSE;

 break;
 }

 default:
 break;
 }

 if (TRUE == createTag)
 {
 status = mdlTag_create(
 &tagElmDescrP->el, /* output area for new tag element */
 &tagElmDescrP->el, /* template element */
 NULL, /* specification for tag definition */
 &tagProps, /* display flag */
 NULL, /* value extracted from text element */
 NULL, /* tag id from mdlAssoc_tagElement */
 NULL, /* computed location offset */
 NULL, /* rest are special text properties */
 NULL, /* ... */
 NULL,
 NULL
);

 if (SUCCESS != status)
 {
 mdlOutput_error ("Error Creating Tag");
 }
 else
 {

 mdlElement_display(&tagElmDescrP->el, ERASE);
 mdlElement_display(&tagElmDescrP->el, NORMALDRAW);
 }

 } /* if (TRUE == createTag) */
 }

 return status;
 }

The next step is to publish the function to MicroStation. In the tagDisplay example, the function, initialize illustrates how to publish an pointer.

/*--+
|
| name initialize
|
| author BSI 04/2001
|
+--*/
Public void initialize
(
void
)
 {
 char *setP; /* a ptr to a "C expression symbol set" */

 // Publish the function tagDisplay.
 setP = mdlCExpression_initializeSet (VISIBILITY_DIALOG_BOX|VISIBILITY_DEBUGGER|
 VISIBILITY_CALCULATOR|VISIBILITY_LOCAL, 0, TRUE);

 mdlCExpression_symbolPublish (setP, "tagDisplay", SYMBOL_CLASS_FUNCTION, (void *)&longType,
 tagDisplay);

 }

MVBA

The first thing that needs to be done is to load the MYAPI.MSL into MicroStation. This can be loaded just like any other MDL application. In this example we load the library in the UserForm_Initialize sub. To load the MDL, it is a simple as sending a keyin:

Example:

CadInputQueue.SendCommand "mdl load MYAPI.msl"

The example tagDisplay utilizes the ILocateEvents interface to locate the element we want to toggle the display on/off.

The ILocateEvents is an interface that steps up MicroStation’s state machine for accepting elements and giving an application notification of certain events for possible interaction. The event-handling methods of the ILocateCommandEvents interface are Accept, LocateFailed, LocateFiler, LocateReset, Cleanup, Dynamics and Start. In this example we are utilizing the Accept method to modify the accepted element. Please refer to the MicroStation V8 Visual Basic for Applications Help for further details.

In this sub we want to determine is the element has any tags, if so we want to extract the tag elements. Once we have the tag elements, we will loop through all of them and pass the object’s MSElementDscr to our MDL function. To obtain the MSElementDescr from a MVBA object there is a hidden member called object.MdlElementDescrP. You will then pass this to our MDL function in the MYAPI.MSL library by using the GetCExpressionValue() function. If this returns 0 then it successfully changed the tag element. Then, all that is needed to be done is rewrite and redraw the element.

'--+
'
' name ILocateCommandEvents_Accept
'
' author BSI

07/2002
'
'--+
Private Sub ILocateCommandEvents_Accept(ByVal Element As Element, Point As Point3d, ByVal View As View)

 Dim oTagElems() As TagElement
 Dim oTagEl As TagElement
 Dim nResult As Integer
 Dim numTags As Integer
 Dim count As Integer

 ' Check to see if the element has any tags
 If Element.HasAnyTags Then

 ' Get tags
 oTagElems = Element.GetTags

 ' Get number of tags
 numTags = UBound(oTagElems)

 ' Loop through all the tags
 For count = 0 To numTags

 Set oTagEl = oTagElems(count)

 ' Check to see if we have a tag element
 If oTagEl.IsTagElement Then

 ' Turn on/off the display attribute by calling into my custom library
 nResult = GetCExpressionValue("tagDisplay (" & oTagEl.MdlElementDescrP & "," & ToggleState & ")", "myAPI")

 End If

 ' Rewrite and redraw the elements.
 Element.Rewrite
 oTagEl.Rewrite
 Element.Redraw msdDrawingModeNormal
 oTagEl.Redraw IIf(ToggleState = 0, msdDrawingModeTemporaryErase, msdDrawingModeNormal)
 Next count

 ' Update the view
 ActiveDesignFile.Views.Item(1).Redraw

 End If

End Sub

To run:

· Copy the myAPI.msl into the …Bentley\Program\MicroStation\mdlsys\asneeded directory.
· Copy the TagDisplay.mvba into …Bentley\Workspace\System\vba directory.
· Open the file tags.dgn.
· From the project manager run TagDisplay.locate
