VBPTICK.MVBA

(Calling MDL functions from VBA)

By Michael Dougherty
MicroStation MVBA is continually evolving and currently may not have a particular functionality a developer may need. One way to get around any limitation is to utilize MDL or Window’s MFC (Microsoft Foundation Classes) functions. This is a common approach and is an acceptable workaround in the VBA community. The VBTICK.MVBA is a MVBA / MDL hybrid example that illustrates how to call into a MicroStation shared library to accomplish a task that is not currently available in MVBA. This example utilizes the mdlKISolid_xxx functions to create a Parasolid tick mark, (If one finds such limitations, please submit a change request to Bentley Technical support for consideration of having any missing functionality incorporated into the SDK).
[image: image1.png]
MicroStation Shared Library

To use your MDL code in VBA, create a MicroStation Shared Library (MSL) that has your functionality in it. An MDL shared library is just an MDL application with symbols exported and published. In this example the function to create the tick mark is createPTick() and can be found in the library I called SOLID.MSL. Creating a library is no different then creating an MDL application. You will need to link in any needed libraries, include header files and function definition files (FDFs) just as you would in an MDL application, the only difference will be in your make file. The dynamic link specification (DLS) will need to be linked. Once you compiled the MDL code into an MSL you will want to place this file in the ..Bentley\Program\MicroStation\mdlsys\asneeded directory.

Dynamic Link Specification

A Dynamic Link Specification (DLS) object file is included in the link step to specify the symbols that are to be exported. The symbols would be the function that you want to export. In the make file, use the -e option to specify that the DLS object file specifies symbols that are being exported. In this example we have: -e$(mdlLibs)$(appName).dlo

It specifies either an MDL shared library or DLM that is to be used by the application being linked. For further information please see the MDL help.

#--
#
solid MDL Make File
#
Copyright (2002) Bentley Systems, Inc.
#
Limited permission is hereby granted to reproduce and modify this
copyrighted material provided that the resulting code is used only in
conjunction with Bentley Systems products under the terms of the
license agreement provided therein, and that this notice is retained
in its entirety in any such reproduction or modification.
#
#--
#--
Define macros specific to this example
#--
%if defined (_MakeFilePath)
 baseDir = $(_MakeFilePath)
%else
 %if defined (powerc) || (m68k)
 baseDir = /
 %else
 baseDir = ./
 %endif
%endif

appName = solid

privateInc = $(baseDir)
langSpec = $(baseDir)english/

Objs = (o)(appName).mo \
 $(mdlLibs)ditemlib.dlo \
 $(mdlLibs)kisolid.dlo \
 $(mdlLibs)kisolidlib.dlo \

#--
mdl.mki contains the default rules for creating .rsc, .mo, etc files
#--
%include mdl.mki

(o)(appName).mo : $(baseDir)$(appName).mc

$(mdlLibs)$(appName).dlo : $(baseDir)$(appName).dls

$(MSJ)mdlsys/asneeded/$(appName).msl : $(Objs)$(mdlLibs)$(appName).dlo
 $(msg)
 >(o)(appName).cmd
 -e$(mdlLibs)$(appName).dlo
 -a$@
 $(linkOpts)
 $(Objs)
 <
 $(MLinkCmd) @$(o)$(appName).cmd
 ~time

/*--+
|
| Copyright (2002) Bentley Systems, Inc., All rights reserved.
|
| "MicroStation" is a registered trademark and "MDL" and "MicroCSL"
| are trademarks of Bentley Systems, Inc.
|
| Limited permission is hereby granted to reproduce and modify this
| copyrighted material provided that the resulting code is used only
| in conjunction with Bentley Systems products under the terms of the
| license agreement provided therein, and that this notice is retained
| in its entirety in any such reproduction or modification.
|
+--*/
/*--+
|
| $Workfile: solid.dls $
| $Revision: 1.1.1.1 $
| $Date: 2002/07/27 18:19:12 $
|
+--*/
/*--+
|
| Function -
|
| MDL Shared Library Example Application Dynamic Link
| Specification File
|
+--*/
/* Specify the version number. */

%Version 0x770

%InterfaceType Mdllib

%ModuleName exlib

%Functions
 initialize
 createPTick
%EndFunctions

%Variables

%EndVariables

%End

The MDL Function

The first step is to consider what you need to accomplish and what is needed to be passed to the MDL function to accomplish the task. In this example we want to pass a pointer to the MSElementDescr of a new CellElement. This cell element will contain the smartSolid tick element.

What is a SmartSolid?

 A SmartSolid is a MicroStation solid element. This element is a container of Parasolid data. Parasolid is an exact boundary-representation geometric modeler supporting solid modeling, generalized cellular modeling and integrated freeform surface/sheet modeling. Developed by Unigraphics Solutions in Cambridge, England, Parasolid is used within Unigraphics Solutions' products and is licensed to many of the world's other leading CAD/CAM/CAE vendors. Designed for high-end MCAD applications, Parasolid is now used in a wide diversity of leading mid-range systems. For further information regarding Parasolid please visit their web site at http://www.ugs.com/products/parasolid/

What type is a smart solid?

SmartSolid (SMSLD) is a type 2 element. What we do is create the geometry using the Parasolid SDK. We then take the geometry and create a cell from this geometry and append the Parasolid data to the cell by embedding boundary representation, (Brep) linkage. Bentley provides an API to create, manipulate and interact with the SmartSolid. Hence don’t be scared that a SmartSolid is a type 2 element, There are function calls such as mdlKISolid_isSolidBody() to determine if a body is a solid.

The createPTick function below from our shared library, illustrates how to create a smartSolid tick mark utilizing the mdlKISolid_xx functions. This function takes as input/output arguments, a MSElementDescr pointer and three doubles. The MDElementDescr will contain the address of the CellElement from VBA and will be populated with the smartSolid tick mark. The doubles are input values indicating the size of tick mark.
/*--+
|
| createPTick
|
| author BSI 7/2002
|
+--*/
Public int createPTick
(
MSElementDescr **edP, // <=> Tick Mark element
double xSize, // => x distance
double ySize, // => y distance
double zSize // => z distance
)

 {
 MSElementDescr *cubeP = NULL;
 KIBODY *bodyP = NULL;
 double xyz[3];

 // Make a copy
 xyz[0]= xSize;
 xyz[1]= ySize;
 xyz[2]= zSize;

 /* Convert master units to UORs */
 mdlCnv_masterToUOR (&xyz[0], xyz[0], MASTERFILE);
 mdlCnv_masterToUOR (&xyz[1], xyz[1], MASTERFILE);
 mdlCnv_masterToUOR (&xyz[2], xyz[2], MASTERFILE);

 /* Begin current translation */
 mdlKISolid_beginCurrTrans (mdlModelRef_getActive());

 /* Convert current units to Parasolid units */
 mdlCurrTrans_invScaleDoubleArray(xyz,xyz,3);

 /* End current translation */
 mdlKISolid_endCurrTrans ();

 /* Make our tick mark */
 mdlKISolid_makeCuboid (&bodyP, xyz[0],xyz[1],xyz[2]);
 mdlKISolid_makeCuboid (&cubeP, xyz[1],xyz[0],xyz[2]);
 mdlKISolid_unite (bodyP, cubeP);

 /* Convert the body to an element */
 mdlKISolid_bodyToElement (edP, bodyP, TRUE, -1, NULL, MASTERFILE);

 /* Free memory */
 mdlKISolid_freeBody (bodyP);
 mdlKISolid_freeBody (cubeP);

 return SUCCESS;
 }

The next step is to publish the function to MicroStation. In the createPTick example, the function initialize illustrates how to publish a function so that other applications can make calls to it.

/*--+
|
| name initialize
|
| author BSI 04/2001
|
+--*/
Public void initialize
(
void
)
 {
 char *setP; /* a ptr to a "C expression symbol set" */

 // Publish the function tagDisplay.
 setP = mdlCExpression_initializeSet (VISIBILITY_DIALOG_BOX|VISIBILITY_DEBUGGER|
 VISIBILITY_CALCULATOR|VISIBILITY_LOCAL, 0, TRUE);

 mdlCExpression_symbolPublish (setP, "tagDisplay", SYMBOL_CLASS_FUNCTION, (void *)&longType,
 tagDisplay);

 }

MVBA

The first thing that needs to be done is to load the MYAPI.MSL into MicroStation. This can be loaded just like any other MDL application. In this example we load the library in the UserForm_Initialize sub. To load the MDL, it is simple as sending a keyin:

Example:

CadInputQueue.SendCommand "mdl load solid.msl"

The example VBPTick utilizes the IPrimitiveCommandEvents interface to place the tick element. The IPrimitiveCommandEvents is an interface that sets up MicroStation’s state machine for new element creation and giving an application notification of certain events for possible interaction such as accepting datapoints. The event-handling methods of the IPrimitiveCommandEvents interface are Keyin, LocateFailed, DataPoint, Reset, Cleanup, Dynamics and Start. In this example we are utilizing the Dynamics and the DataPoint events to create our tick mark element. Please refer to the MicroStation V8 Visual Basic for Applications Help for further details.
In the Dynamics and DataPoint subs we call our MVBA function, VBAcreateTick to return us our smartSolid tick mark. Recall that a smartSolid element is a type 2 element. After I create a new cell element, I move this cell to the input point and take the inverse of the view’s rotation matrix. Taking the inverse of the rotation matrix will place the cell “flat” to whatever the rotation of the view is. Then we redraw the element and if we are in the DataPoint event we add the cell to the model.
'---+
'
' name IPrimitiveCommandEvents_Dynamics
'
' author BSI 05/2002
'
'---+
Private Sub IPrimitiveCommandEvents_Dynamics(Point As Point3d, ByVal View As View, ByVal DrawMode As MsdDrawingMode)

 Dim oEl As CellElement
 Dim pntFixed As Point3d
 Dim pntFixed2 As Point3d

 'Create tick mark
 Set oEl = VBAcreateTick(Point, TICKSIZE)

 'Move tick to point
 oEl.Move Point

 ' Invert the matrix and transform the element
 oEl.Transform Transform3dFromMatrix3dAndFixedPoint3d(Matrix3dTranspose(View.Rotation), Point)

 ' Draw element
 oEl.Redraw DrawMode

End Sub
Taking a closer look at VBAcreateTick function, you will notice the MDL function createPTick() that is in our shared library. The first step is to create a new CellElement object. Then I make the call to the MDL function by utilizing the GetCExpressionValue method. I pass the address of a long, (elmP), which will hold a pointer to the newly created tick mark. I also pass the desired size of the tick mark. Then set the pointer to the tick mark that elmP holds by using MdlCreateElementFromElementDescrP(). This is a hidden function and should be used with care. Finally I return the newly created CellElement.
'---+
'
' name VBAcreateTick
'
' author BSI 05/2002
'
'---+
Public Function VBAcreateTick(Point As Point3d, size As Double) As CellElement
 Dim nResult As Integer
 Dim newPTick As CellElement
 Dim elmP As Long

 'create a new tick mark in memory
 nResult = GetCExpressionValue("createPTick (" & VarPtr(elmP) & "," & _
 size / 2 & "," & size & "," & size / 2 _
 & ")", "solid")

 ' Create a cell element that will be the tick mark
 Set newPTick = MdlCreateElementFromElementDescrP(elmP)

 ' Return the tick mark
 Set VBAcreateTick = newPTick

End Function

To run:

· Copy the solid.msl into the …Bentley\Program\MicroStation\mdlsys\asneeded directory.
· Copy the VBPTick.mvba into …Bentley\Workspace\System\vba directory.
· Create a new 3d dgn file.
· From the project manager run VBTick.PlaceTick
