
Programmer’s Reference Guide

DAA009540-1/0004

MicroStation MDL™

Trademarks
AccuDraw, Bentley, the “B” Bentley logo, Engineering Links, MDL, MicroStation,
MicroStation GeoGraphics and SmartLine are registered trademarks of Bentley Systems,
Incorporated.

Bentley SELECT is a service mark of Bentley Systems, Incorporated.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Distiller, Exchange, and PostScript
are trademarks of Adobe Systems Incorporated.

Java and all Java-based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. in the U.S. and other countries.
United States Patent Nos. 5,815,415 and 5,784,068.

Windows is a registered trademark and Win32s is a trademark of Microsoft
Corporation.

Other brands and product names are the trademarks of their respective owners.

Copyrights
 1999 Bentley Systems, Incorporated.

MicroStation/J 1998 Bentley Systems, Incorporated.

MicroStation 95 1995 Bentley Systems, Incorporated.

MicroStation Version 5 1993 Bentley Systems, Incorporated.

IGDS file formats 1981-1988 Intergraph Corporation.

Intergraph Raster File Formats 1993 Intergraph Corporation Used with permission.

Unpublished – rights reserved under the copyright laws of the United States and other
countries.

All rights reserved.
MicroStation MDL Programmer’s Reference Guide iii

iv MicroStation MDL Programmer’s Reference Guide

Table of Contents
MDL Overview

With MDL, You Can: .1-1

MDL Fundamentals .1-2
Advantages of MDL over MicroCSL.1-3

MDL Applications .1-5
Performance considerations .1-6

The MDL Runtime Environment .1-7

Application Task Identifier .1-8

MDL Development Utilities .1-9

File Types .1-9
Resource source files .1-10

MDL Application Organization .1-12

MDL Examples .1-14

MDE Workspace

Tools Menu .2-1
Command Table Editor (Ctrl+T) .2-1
Dialog Box Builder (Ctrl+B) .2-2
Icon Editor (Ctrl+I) .2-2
RDE (Ctrl+R) .2-2
String List Editor (Ctrl+S) .2-2
Generate Resource S6ource (CtrlR)2-2

MDE On-line Help. .2-2
MicroStation MDL Programmer’s Reference Guide v

Table of Contents
Design Methodology

Where Do I Start? . 3-1
Functional specification . 3-1
High-level MDL application design 3-2
Project task list . 3-3

Designing a Dialog Box . 3-5

Implementing Command Processing 3-6
Immediate Commands . 3-6
Utility Commands . 3-6
Primitive Commands. 3-6

Basic Application Architecture . 3-7

Recommended Directory Structure. 3-8

MDE Editing Tools

MicroStation Development Environment 4-1

Command Table Editor . 4-2
File menu. 4-2
Edit Menu . 4-4

Dialog Box Builder . 4-4
Dialog Menu . 4-5
Load (Ctrl+O) . 4-6
Edit Menu . 4-7
Options Menu . 4-9
The Tools Palette . 4-11
Alignment Menu. 4-13

Icon Editor . 4-14
File menu. 4-15
Edit Menu . 4-16
Import Menu . 4-16

Resource Development Environment (RDE) 4-16
File Menu. 4-17
Resource Menu. 4-18
Options Menu . 4-19
Opening and Closing Files . 4-20
Example of creating source code for a new resource 4-20
Example of modifying source code

for an existing resource . 4-21
vi MicroStation MDL Programmer’s Reference Guide

Table of Contents
Limitations .4-22
Macro Description Dialog Box .4-23

String List Editor .4-24
File menu .4-25
Edit Menu .4-26

A Comparison of MDL and C

Major Differences Between MDL and ANSI-C 5-1

Pragmas .5-2
Pragma: alias .5-2
pragma: incompatiblePointerParameters,

incompatiblePointers, incompatibleReturn,
noAnsiDeclaration, noReturnStatement,
undeclaredFunction. .5-4

pragma: options .5-7
pragma: packedLittleEndianData 5-8
pragma: pointerToNative .5-9
pragma: resourceID .5-9
pragma: ident .5-10
pragma: suppressREQCmds .5-11
pragma: translate .5-12
pragma: Version .5-13

Structure Layout. .5-14

Bitfield Handling .5-14

MicroStation Resources

MicroStation Resources .6-1

An Overview of Resources .6-1
Benefits from using resources .6-2
Application Resources .6-3
General Resource Definition Format6-3
Resource Examples .6-4
Variable sized arrays .6-5

Creating Resources .6-6
Error message translation: an example

of static resource use. .6-7
MicroStation MDL Programmer’s Reference Guide vii

Table of Contents
User preferences: An example of dynamic resource use . . 6-7
Predefined resources in MicroStation:

Message list and table. 6-8

Modifying Resources . 6-9
Finding your way around a resource 6-9
The Resource Manager Functions 6-11

Managing Resources . 6-13
Message Subsystem . 6-14
Command Parser . 6-14

mdlParse_loadCommandTable . 6-15

mdlParse_unloadTable . 6-15

mdlParse_loadKeywordTable . 6-15
Dialog Box Manager . 6-16

The MicroStation Resource Manager 6-16
Resource File Management . 6-16
Loading and querying resources 6-17

A Resource Programming Example . 6-22

Binary Portability . 6-27
Differing data representations . 6-28
MicroStation file types and their portability 6-29
Binary portable files . 6-30
How the Binary portability functions work 6-31
Four Recipes for Binary portable data 6-31
A. Type 66 Level 20 Elements (Application Elements) . . . 6-31
B. User Attribute Linkages. 6-32
C. 4.x Resource Files. 6-33
D. 5.0 Resource Files . 6-34
Linkage Functions. 6-35

Resource Source Generator . 6-35
Generate Resource Source dialog box 6-36

Resource Utility Programs . 6-37
cmdcnvert conversion utility for

command table source files 6-37
rdump resource librarian dump utility 6-38
viii MicroStation MDL Programmer’s Reference Guide

Table of Contents
Building Applications

Building Application Process .7-1

Creating a Makefile and Using the bmake Utility7-2
Makefile format .7-3
Starting the bmake utility .7-9

Compiling an Application Command Table7-11

Generating Resource Files from C Type Definitions7-17
Predefined macros. .7-18
Syntax. .7-19

Compiling Resources .7-19
Command line syntax .7-20

Compiling MDL Applications .7-21

Using the MDL Librarian .7-24

Linking MDL Applications .7-24

Resource Librarian .7-27

Running MDL Applications

Relationships Between Terms. .8-1

Loading an MDL Program .8-1

Unloading an MDL Program. .8-3

Using Commands in MDL Tasks .8-4

Aborting an MDL Task .8-5

Using MS_INITAPPS Applications .8-5

Debugging MDL Applications

Debugging .9-1

Debugger Input & Output .9-2

How the Debugger Finds Source Code9-3

Preparing an Application for Use With the Debugger 9-4

Using C Expressions With the Debugger9-4
MicroStation MDL Programmer’s Reference Guide ix

Table of Contents
Debugger Commands . 9-5
Debugger command syntax. 9-5
The ALIAS command . 9-5
The BREAKPOINT command . 9-6
The CALLS command . 9-7
The DISPLAY command . 9-8
The DOWN command . 9-9
The DUMP command . 9-9
The GO command . 9-10
The HELP command . 9-10
The IF command . 9-10
The MEMORY command. 9-11
The QUIT command. 9-11
The RECORD command . 9-11
The SCOPE command. 9-12
The SET command . 9-13
The STEP command . 9-13
The SYMBOLS command . 9-13
The TYPE command. 9-14
The UP command. 9-14
The WATCH command. 9-14

Memory Debugging . 9-15

Automatic Fault Reporting . 9-16
Debugger Initialization File . 9-16

Documentation

Useful Documentation . 10-1

Development Methods . 10-1
Tools . 10-2
Converting to Help . 10-5
Example. 10-6
Documentation Principles . 10-7
Relevant sections of MicroStation’s documentation 10-8
Why your application should have

on-line documentation . 10-9
Suggested Application Document Organization 10-9
x MicroStation MDL Programmer’s Reference Guide

Table of Contents
Element Descriptors

Element Descriptors. .11-1
Recursive programming .11-4
Functions that use element descriptors11-4
Element descriptor validation .11-4
Cautions about memory use and element descriptor size. .11-5

Standard C Functions

ANSI Standard Functions .12-1

ANSI-Compliant Function Definition Files (.fdf).12-3

MDL Built-In Variables

Variables .13-1

Sample MDL Applications

Examples .14-1
Building sample MDL applications14-2
Running MDL applications .14-2

dlogdemo MDL Example .14-3

chngtxt MDL Example .14-4

Dialog Box Manager Overview

Overview .15-1

Features .15-2
Application aware dialog items .15-2
Advanced functionality .15-3
Reusable dialog items .15-3
Flexible architecture .15-3
No complicated input loop .15-4
Fast prototyping .15-4
Portable across multiple hardware platforms.15-5
User interface independent .15-5
Designed for internationalization15-5

Dialog Box Manager Basic Concepts 15-6
MicroStation windows .15-6
Resources .15-7
MicroStation MDL Programmer’s Reference Guide xi

Table of Contents
Dialog item resource specifications
and item list specifications . 15-8

Dialog item state: internal value versus external state 15-9

Referencing Application Variables from Resource Files 15-10
Modeless and modal dialog boxes. 15-10
Item synchronization . 15-12
Synonym resources. 15-12
Keyboard focus . 15-13
Sinking dialog boxes . 15-13
Specifying coordinates . 15-14
Text font . 15-16
Color . 15-16
The dialog box manager’s internal architecture 15-16
Hook function IDs . 15-18

Dialog Box Manager Header Files . 15-19

The Dialog Box Manager Library . 15-19

Creating A Dialog Box . 15-20

Dialog Box Manager Sample Programs 15-21

Recommended Reading. 15-22
OSF/Motif Style Guide . 15-22
Microsoft Guidelines . 15-22
Apple Computer User Interface Guidelines 15-22
General Interface Guidelines . 15-22

Standard Dialog Box Items

Structured Items . 16-1

DialogBoxRsc Structure . 16-2

DialogItemRsc Structure . 16-6

Common Item Resource Fields . 16-8

Label Item . 16-9
Item list specification . 16-9
Item resource specification . 16-10
Item hook function messages . 16-10
Label item functions . 16-10
xii MicroStation MDL Programmer’s Reference Guide

Table of Contents
Group Box Item .16-11
Item List Specification .16-11
Item resource specification .16-11
Item hook function messages. .16-12
Group box item functions .16-12

Separator Item .16-12
Item List Specification .16-12
Item resource specification .16-13
Item hook function messages. .16-13
Separator item functions .16-13

Toggle Button Item .16-13
Item list specification .16-13
Item resource specification .16-14
Item hook function messages. .16-15
Toggle button item functions .16-16

Push Button Item. .16-16
Item list specification .16-16
Item resource specification .16-17
Item hook function messages. .16-19
Push button item functions .16-19

Option Button Item .16-21
Item list specification .16-21
Item resource specification .16-22
Item hook function messages. .16-25
Option button item functions .16-25

Scroll Bar Item. .16-26
Item list specification .16-26
Item resource specification .16-27
Item hook function messages. .16-28
Scroll bar item functions .16-28
View window icons and scroll bars 16-28

Text Item .16-28
Item list specification .16-29
Item resource specification .16-29
Item hook function messages. .16-33
Text item functions .16-33
MicroStation MDL Programmer’s Reference Guide xiii

Table of Contents
Multi-line Text Item . 16-33
Item list specification . 16-34
Item resource specification . 16-35
Item hook function messages . 16-37
Multi-line Text item functions . 16-38

Color Picker Item . 16-38
Item list specification . 16-39
Item resource specification . 16-39
Item hook function messages . 16-40
Color picker item functions . 16-41

Level Map Item. 16-41
Item list specification . 16-42
Item resource specification . 16-42
Item hook function messages . 16-43
Level map item functions . 16-43

Menu Bar Item . 16-43
Item list specification . 16-44
Item resource specification . 16-44
Item hook function messages . 16-45
Menu bar item functions . 16-45

Text Pull-down Menu . 16-47
Item resource specification . 16-47
Item hook function messages . 16-51
Text pull-down menu specific functions 16-51

Option Pull-down Menu . 16-52
Item resource specification . 16-52
Item hook function messages . 16-54
Option pull-down menu functions 16-55

Color Picker Pull-down Menu . 16-55
Item resource specification . 16-55
Item hook function messages . 16-57
Color picker pull-down menu functions 16-57

Tool Palettes. 16-57
Icon command frame . 16-58
Icon command palette . 16-60
Icon command . 16-62
Palettes vs. tool boxes . 16-66
Icon Command Resources. 16-75
xiv MicroStation MDL Programmer’s Reference Guide

Table of Contents
List Box Item .16-77
Item list specification .16-78
Item Resource Specification .16-79
Item hook function messages. .16-83
List box item functions. .16-83
List boxes .16-84

Generic Item .16-90
Item list specification .16-90
Item resource specification .16-91
Item hook function messages. .16-91
Generic item functions. .16-92

Button Group Items. .16-93
Item list specification .16-93
Item resource specification .16-94
Item hook function messages. .16-97

Sash Item .16-98
Item list specification .16-98
Item resource specification .16-99
Item hook function messages. .16-100
Sash item functions .16-100

Scale Item .16-100
Item list specification .16-100
Item resource specification .16-101
Item hook function messages. .16-103
Scale item functions. .16-104

Popup Menu Item .16-104
Item list specification .16-104
Item resource specification .16-105
Item hook function messages. .16-106
Popup menu item functions .16-106

Radio Button Item .16-106
Item list specification .16-106
Item resource specification .16-107
Item hook function messages. .16-109
Radio button item functions .16-109

Tab Page Item .16-110
MicroStation MDL Programmer’s Reference Guide xv

Table of Contents
Tab Page List . 16-110
Item List Specification . 16-110
Item Resource Specification . 16-111
Item Hook Function Messages. 16-113

Tab Page . 16-113
Item List Specification . 16-113
Item Resource Specification . 16-114
Item Hook Function Messages. 16-115

Combo Box Item . 16-116
Item List Specification . 16-116
Item Resource Specification . 16-116
Item Hook Function Messages. 16-119
ComboBox Item Functions . 16-119

SpinBox Item . 16-119
Item List Specification . 16-119
Item Resource Specification . 16-120
Item Hook Function Messages. 16-121

Dialog Box Manager Hook Functions

Hook Functions . 17-1

Dialog Hook Functions . 17-2
DialogMessage structure . 17-2

Dialog Hook Function Messages . 17-4
Non-requested Messages. 17-6
Focus Messages . 17-10
Size Messages. 17-16
Button Messages. 17-20
Open & Close Messages . 17-24
Miscellaneous Messages . 17-26

Item Hook Functions . 17-28
DialogItemMessage structure. 17-28
DialogItem structure . 17-29
RawItemHdr structure . 17-32

Item Hook Function Messages. 17-34
General item hook function messages 17-36
Input focusable item hook function messages 17-46
Generic item hook function messages 17-50
xvi MicroStation MDL Programmer’s Reference Guide

Table of Contents
A Complete Example

MDL Applications .18-1

The basic.ma application .18-1

The application header file: basic.h .18-3

The resource file: basic.r .18-5

The source code file: basic.mc .18-10

The command table file: basiccmd.r .18-16

The command number header file: basiccmd.h18-17

The type definition file: basictyp.mt .18-18

The message file: basicmsg.r .18-18

The text file: basictxt.h. .18-20

The application makefile: basic.mke .18-20

The makefile include file: basicrsc.mki18-24

Dialog Box Style Guidelines

Design Small Dialog Boxes .19-1
Emphasize modeless rather than modal dialog boxes19-2
Limit the number of fonts .19-2
Limit the number of colors. .19-2
Use the standard order for push buttons.19-3
Match the dialog item type to the intended operation19-3
Use MicroStation as an example .19-3

Debugging Hook Functions .19-3
The Dialog Box Manager Message dialog19-3
Displaying strings .19-4
Tracking hook function messages 19-4

Dynamic Link Modules

Overview .20-1

Changes to MDL Source .20-3

Access to MicroStation’s Built-ins From DLMs20-3
MicroStation MDL Programmer’s Reference Guide xvii

Table of Contents
Linking an MDL Program With a DLM 20-4

Runtime Concerns. 20-4

Function Pointers as Parameters to Built-in Functions 20-5

Identifying MDL Applications . 20-6

Calling Custom MDL Functions . 20-6

Determining When an MDL Program is Unloaded 20-7

Application-Specific Resources versus System Resources. 20-7

Dynamic Link Specification Source Files 20-8

Additional Include Files . 20-9

A Sample DLM . 20-10
Dynamic Link Specification Source File 20-10
Managing Application Resources 20-11
Emulation of an MDL Asynchronous Function 20-12
DLM Hook Functions . 20-12
Initialization Function; initialize . 20-12
Error Reporting Function; dlmSystem_displayError 20-12
C++ DLMS . 20-13

Platform Specifics . 20-13
Clipper-specific notes . 20-13
SPARCstation-specific Notes . 20-16
HP700-Specific Notes . 20-18
PC Protected Mode Notes . 20-19
Windows NT Notes. 20-20
Silicon Graphics Notes . 20-22
IBM RS/6000 Notes . 20-23

Calling Across DLMs . 20-27

Debugging DLMs . 20-28

DLM Functions . 20-29

dlmSystem_getDLMPath 20-30
DLM Memory Functions . 20-30
DLM File Functions. 20-30

dlmSystem_callMdlFunction . 20-31

dlmSystem_setFunction . 20-31
xviii MicroStation MDL Programmer’s Reference Guide

Table of Contents
initialize .20-32

userHook_mdlUnload, userHook_dlmUnload 20-33

MDL Shared Libraries

Difference .21-1

Overview .21-1

Creating an MDL Shared Library .21-3

Linking an MDL Program with an MDL Shared Library 21-3

Loading an MDL Shared Library .21-6

Unloading an MDL Shared Library .21-9

Determining When an MDL Program is Unloaded21-10

Defining the Shared Functions and Variables 21-12
Runtime Concerns .21-13

initialize .21-13

userHook_mdlUnload, userHook_sharedLibNoMoreClients,
userHook_allMdlUnload .21-14

Database Manipulation

SQL Database Interface Toolkit .22-1
Architecture. .22-1
SQL Requests .22-2
DatabaseService Structure .22-2
Communications .22-9
Session Debug .22-10
Environment Variables .22-10
DBTYPE Resource .22-11

Using MicroStation Database Servers from Initapps22-12
Overview .22-12
Sample Database Initapp .22-13

Low Level DOS Interface Functions (PC only)

MDL and DOS .23-1
Example .23-2

int86, intdos .23-2

int86PassThrough .23-3
MicroStation MDL Programmer’s Reference Guide xix

Table of Contents
bdos . 23-3

segread . 23-4

copyToReal, copyFromReal . 23-4

Internationalization

Overview of Internationalization Issues A-2
Target Languages . A-2
Recommendation . A-2

Character Encoding Methods . A-3
DEC Multinational ASCII Character Set. A-3
Character Translation Table. A-4
Asian Character Set . A-5
Codeset Handler. A-6
Unicode . A-6

Data Input . A-7
Keyboard Input . A-7
File Input . A-10

String Processing . A-11
Coding Practices to Avoid . A-11
Wide Character Processing . A-12

mbstowcs . A-14

wcstombs . A-14

mbtowc . A-14

wctomb . A-14

mblen . A-15

setlocale . A-15

wcscoll . A-17

wcsxfrm . A-19

wcsftime . A-19

Display and Output . A-29
Fonts . A-29
Text Placement in Design Files . A-36
Plotting and Printing . A-37
xx MicroStation MDL Programmer’s Reference Guide

Table of Contents
Messages and Resource Files .A-37
Untranslatable Strings .A-38
Dialog Box Design .A-38
Source File Organization .A-42
Strings in Program Source (.mc) FilesA-44
Strings in Dialog Box Resource (.r) FilesA-45
Compiling Translated Resource Files A-47
Numbered Argument Lists .A-48

Tools for Development and Testing .A-49
Hardware .A-49
Software .A-49

Recommended Reading .A-49

Settings Manager

Creating Settings Manager Files .B-1
Creating a Settings Group .B-2
Writing a Settings Group .B-3

Adding Functionality to ascgroup.maB-5
Adding Keywords to the Keyword Table B-5
Adding Keywords to the List .B-6
Coding the Functionality for new KeywordsB-6
Formatting the ASCII Input File .B-6
Example, Creating a Settings Manager ResourceB-10

MicroStation 95

Platform Changes. .C-1

MDL Compiler .C-2
Additional type checking .C-2
Resource Files .C-3
Resource Editing Tools .C-3

Other Development Facilities .C-4
Compatibility with macro customizationC-4
File Open Dialogs .C-5
MicroStation vs. PowerDraft .C-6
Dialog Manager .C-6
Message Boxes .C-10
MicroStation MDL Programmer’s Reference Guide xxi

xxii MicroStation MDL Programmer’s Reference Guide

1 MDL Overview
MicroStation Development Language (MDL) is a complete
development environment that lets applications take full advantage of
the power of the MicroStation CAD engine. MDL can be used to
develop simple utilities, customized commands or sophisticated
commercial applications for vertical markets.
With MDL, You Can:
• Develop tightly integrated interactive applications that run inside

MicroStation and “look and feel” like a part of MicroStation. In fact,
many features of MicroStation are implemented as MDL applications.

• Develop applications that can be easily ported between hardware
platforms. MDL removes, to the extent possible, the typical concerns
with the graphics subsystem, operating system and CPU. Porting an
MDL application typically involves just transferring source files to the
new platform and rebuilding.

• Enable user interface-related data to be organized for efficient
translation for foreign language markets.

• Have MicroStation serve as the “CAD operating system,” providing the
same type of support to CAD applications as the operating system
does to non-graphic applications. MicroStation loads and executes
MDL applications.

This chapter discusses:

• MDL fundamentals

• MDL applications

• MDL runtime environment

• Application task identifier

• MDL development utilities

• File types

• MDL application organization
MicroStation MDL Programmer’s Reference Guide 1-1

MDL Overview
MDL Fundamentals
MDL Fundamentals
MDL applications are tightly integrated with MicroStation. To the user, an MDL
command or operation cannot be distinguished from a core MicroStation command. In
fact, many features of the base MicroStation product are implemented as MDL
extensions. For the commercial developer, a family of cooperative programs can be
built in a modular fashion to provide the same level of integration among all MDL
programs.

MDL uses the standard C programming language. Using C has several advantages. For
instance, the programmer who already knows C is prepared to start immediately. On
the other hand, the programmer who does not have C experience will find a wealth of
learning resources, including books, computer-aided instructional material, and
professionally taught C programming courses. The investment in learning C will pay off
handsomely in the long run, since a large portion of the world’s professional software
(and virtually all CAD software) is developed in C.

MDL supplies the following:

• A complete implementation of C. The MDL compiler compiles C
source files into pseudocodes understood by MicroStation.

• A pseudocode interpreter inside MicroStation that executes MDL
programs.

• A complete development environment, including the following tools:
- C compiler, librarian and linker
- Resource compiler and librarian
- Source level debugger
- Make program

No additional tools are required, except for a text editor.

• A runtime library of over 1750 built-in functions — functions that
are part of the MicroStation executable. Built-in functions run at full
compiled speed and are the same functions used internally by
MicroStation’s own commands. These built-in functions are essential
for applications to work seamlessly with MicroStation and other
applications. MDL programmers use the same tools as MicroStation
developers to create commands.

• Access to built-in variables. Much of MicroStation’s global data is
available to MDL programs as built-in variables. Header files define
the data structures of built-in variables.

• Hooks (pointers to functions) to modify MicroStation’s behavior.
There are many places where applications can use MDL to modify
MicroStation’s behavior. An application can designate one of its
functions as a hook and cause MicroStation to call that function when
certain events occur.
1-2 MicroStation MDL Programmer’s Reference Guide

MDL Overview
Advantages of MDL over MicroCSL
• A runtime environment that provides standard operating system
functions such as file access, memory management, and memory
protection.

• Tools for developing a platform-independent graphical user interface
including dialog boxes, pull-down menus and palette menus. The user
interface tool box insures that the same dialog box code will work on
all platforms.

• The resource manager lets you separate your application’s code and
data. The Resource Manager controls data that is not actually included
in the C program. The Resource Manager includes a C-like language
used for defining data, a Resource Compiler for compiling definitions,
and a library of MDL built-in functions used to access data contained
in resource files. The type of data managed by the resource manager
includes dialog box definitions, messages, and prompts.

MDL has several other advantages. For example, it is designed to make applications
easy to port from one MicroStation platform to another. In many cases, porting involves
only transferring source files to the target platform and rebuilding. MDL also enables
user-interface-related data to be organized so the application developer can efficiently
set up applications to translate for non-English-speaking markets.

Advantages of MDL over MicroCSL
MDL provides much better integration with MicroStation.

• MDL applications use the same address space as MicroStation — this
makes sharing data between MDL applications trivial. MicroCSL
programs run as a separate image (in UNIX, they are a separate
process), which makes sharing data very difficult.

• MDL applications have better access to MicroStation’s internal data
structures. Since MDL applications run in the same address space as
MicroStation, many of the internal structures used by MicroStation are
available. MDL also provides many built-in functions to access these
structures.

• An MDL application does not have to be loaded and unloaded each
time it is called, but may remain loaded throughout the session. This is
similar to a TSR (Terminate and Stay Resident) program in DOS.
Subsequent calls to the application are faster since the function need
not be reloaded each time.

• MDL commands can look and act just like MicroStation primitive
commands and can be called by another application or user
command. Since an MDL command acts as a MicroStation primitive
there is no extra code needed to handle a viewing command that may
interrupt the MDL command.
MicroStation MDL Programmer’s Reference Guide 1-3

MDL Overview
Advantages of MDL over MicroCSL
• Resources (such as dialog box definitions) can be contained in an
MDL executable.

• MicroStation contains a built-in MDL debugger. This is a large
advantage over MicroCSL as a familiar debugger is always available no
matter which hardware platform the development is being done on.
The MDL debugger also has direct access to all published structures in
MicroStation.

MDL provides a much better function library.

• There are far more functions available in MDL than in MicroCSL,
making the scope of MDL greater than that of MicroCSL.

• MDL functions are organized according to specific operations. They
are not a random collection of functions used to simply modify a
design file. Similar functions have similar prefixes (for example,
mdlSystem_… for system functions and mdlFence_… for fence
operations).

• Function arguments in MDL are defined in a logical way for the C
language. Function arguments in MicroCSL are based on PDP-11
FORTRAN and are not particularly logical to a C programmer.

MDL applications are much more portable.

• MDL applications are source code compatible on all hardware
platforms supported by MicroStation (version 4.0 and later).
Applications built for the PC work on a UNIX-based system or a
Macintosh with little (or no) conversion.

• Since MDL has its own compiler which creates its own p-code, it is
very compatible between releases of MicroStation.

MDL applications use a “function call” instead of a “command” level interface.

• MDL is much more flexible than MicroCSL because it only has to
create functions to handle the specific events of an application. MDL
applications run within MicroStation’s main loop and can modify
MicroStation’s behavior. MicroCSL applications can only sequence
MicroStation commands.

• MDL applications run in the main loop of MicroStation and can alter
the events of that design session. The MDL application is, in effect,
driving MicroStation. In contrast, MicroStation controls a MicroCSL
application.
1-4 MicroStation MDL Programmer’s Reference Guide

MDL Overview
MDL Applications
MDL supports event driven programming.

• In event driven programming, applications respond to the user rather
than using the “prompt and wait” technique.

• Internally, MicroStation is event driven. Therefore, all MDL
applications, which run inside MicroStation, must also use this
technique.

• Any environment that has a graphical user interface will require that
the applications which support it use the event driven programming
techniques.

MDL is memory-based, making MDL applications faster and more reliable than
MicroCSL applications for most operations.

• A MicroCSL application must perform all operations directly in the
design file. In contrast, an MDL application can perform most
operations in memory. For example, an MDL application performs
element manipulations in memory — changes are not written to the
design file unless the MDL application requests it. Since reading and
writing to disk is time-intensive, MDL applications can be much faster
than those written with MicroCSL.

• When an MDL application writes elements to the design file, it can use
the same code MicroStation uses to verify the elements. This makes
MDL applications more reliable than those written with MicroCSL.

• An application that handles events and is memory-based is usually
more modular.

✍ MicroCSL programs are faster for some processor-intensive calculations.
See “When to use external programs” on page 1-7 for more information.

MDL Applications
This manual uses the terms MDL program, MDL application and MDL task. An
MDL program resembles programs in other systems. The user creates an MDL
program by compiling the source modules and then linking the object modules. An
MDL application consists of an MDL program, plus all other associated resources. The
program is the only resource required in an application. An application can contain
more than one program. An MDL task is an MDL program loaded by MDL. A task is
either active (when MicroStation’s pseudocode interpreter is executing its instructions)
or waiting to be activated by some event occurring within MicroStation.

An MDL program consists of a code segment containing instructions understood by the
MDL pseudocode interpreter and a data segment that can contain some initialized data.
MicroStation MDL Programmer’s Reference Guide 1-5

MDL Overview
Performance considerations
The pseudocodes are not the same as the native computer’s instructions. Consequently,
an object library cannot be linked to an MDL application unless the MDL compiler
created the object library.

The program is the only resource required in an MDL application. Other resources
frequently used in MDL applications include the following:

• A command table describes the syntax associated with commands
available with the MDL application.

• Dialog boxes make a platform independent graphical user interface
possible.

• Message lists are resources where MDL programs can store
infrequently used messages. Message lists allow these messages to be
stored in data files rather than as part of the resident application.
Thus, you can create foreign-language versions of an application by
translating messages in the external file. At run time, these messages
are accessed through built-in functions.

• Help text.

Performance considerations
In most cases, the performance of a well-written MDL application is excellent, for the
following reasons:

• MDL source code is compiled into “P-Code” (pseudocode). The MDL
interpreter is not a source level interpreter that uses tokens, such as
the user command interpreter.

• The MDL interpreter is highly optimized for MDL P-Code.

• MDL applications use the same address space as MicroStation and
should use built-in functions, which run in native mode with no
context switching (the need to switch from one application to
another) required for most processing.

When to use dynamic link modules (DLMs)

Dynamic Link Modules (DLMs) are portions of code that can be loaded and linked by
MicroStation at runtime. These modules are compiled into native machine code.
Dynamic Link Modules are created using the host operating system’s tools such as the
compiler and linker. The MDL tools are not used to create Dynamic Link Modules.
1-6 MicroStation MDL Programmer’s Reference Guide

MDL Overview
When to use external programs
Dynamic linking is appropriate when:

• MDL’s performance is insufficient.

• Shared libraries are required so that applications can use common
code.

• Access to object-code libraries is needed.

When to use external programs

MDL applications can communicate with MicroCSL programs using shared memory and
message queues. The interaction between MDL and MicroCSL on all platforms is similar
to the interaction between MicroStation and MicroCSL that previously existed only in
MicroStation 32.

MDL’s external program interface should be used if:

• The application requires library functions that are not shipped in
source code (for example, it may have to link with an object library
supplied by another vendor). An MDL application cannot call a
function that is not an MDL function or built-in function. The external
program can be linked with this library, and the functionality of the
library is now available to the MDL application through the external
program.

• There are processor-intensive operations, such as intense floating
point calculations, that must be run at true machine speed.

✍ External programs can and should be used to evolve existing MicroCSL
applications. Initially, MDL may be used to create a user interface that is
fully integrated with MicroStation while continuing to use MicroCSL code
to do most of the actual processing.

The MDL Runtime Environment
This section describes the features provided by the MDL runtime environment. This
environment provides capabilities that an operating system generally provides to the
program.

MDL applications can access files through standard C file-handling. MDL applications
can access dynamic memory allocation through standard C memory management
functions such as malloc and free.

Data pointers are real pointers to MicroStation’s data address space. These data
pointers can be shared with MicroStation and other MDL applications.
MicroStation MDL Programmer’s Reference Guide 1-7

MDL Overview
Application Task Identifier
In contrast, MDL function pointers are offsets in the MDL program’s address space;
they are not real pointers. Thus, they must point to MDL functions (a sequence of
pseudocodes produced by the MDL compiler) and cannot point to native compiled
functions (native machine code instructions produced by the C compiler and specific
to the machine and operating system). An MDL function pointer can be used only
within an MDL application and cannot be shared with other MDL applications.
MicroStation provides built-in functions that let MDL programs designate user hook
addresses to MicroStation. This capability lets MicroStation give function pointers the
special handling they need so they can be called from the native compiled code in
MicroStation.

The MDL runtime environment provides exception handling. An exception is a
serious error than can be detected at runtime. When an exception is detected, MDL
reports the exception type and tries to abort the application. An application can
prevent the abort by specifying a user hook using the mdlSystem_setFunction built-in
function.

Exceptions fall in two categories:

• Faults detected by the native machine and operating system. For
example, if an MDL program causes a floating point exception or tries
to use a NULL pointer, a hardware exception occurs. MicroStation
intercepts the fault and performs its error recovery.

• Faults detected by MDL. Faults in this category include stack overflow
and divide-by-zero.

Application Task Identifier
Every active MDL task has a task identifier (task ID). The task ID must be unique,
since it is frequently used in MicroStation to unambiguously identify a task. Also, when
you enter the name of an MDL task, you specify the task ID. All messages pertaining to
an MDL application’s status include the task ID.

Each MDL task has an associated task ID. By default, the task ID is the base name of
the file from which the program is loaded. To override the default, specify the task ID
to mlink using the -t link option.

You must use the -t link option to associate a task ID with a program under the
following circumstances:

• When another program or resource file needs to know the task ID, the
task ID must be constant and therefore needs to be specified. If you
do not use the link option to specify the task ID and the file
containing the program is renamed, the task ID will also change.
1-8 MicroStation MDL Programmer’s Reference Guide

MDL Overview
MDL Development Utilities
• When the application resource file contains more than one MDL
program, you must use the link option to specify a task ID. If you do
not, MDL cannot determine which program to load. See “Running
MDL applications” on page 14-2 for more information.

An MDL program that does not communicate with other MDL programs and does not
combine programs into the same resource file does not need to use the task ID.

MDL Development Utilities
This section briefly describes development utilities provided with MDL. More
detailed information on all of the utilities is included later in “Building Applications” on
page 7-1.

File Types
There are two major types of source files for an MDL application — C source (usually
with the suffix .mc) and resource source (usually with the suffix .r).

The main function is optional. In MDL, it is not mandatory to have a main function. If
one is present it is usually just initializes the application variables and performs any
initial setup. Since MDL is a set of functions to handle events, an MDL application does
most of its work in command functions, state functions and dialog manager hooks.

Utility
name

Description

bmake Make utility used to automate compiling, linking, and resource
building for complicated applications.

mcomp Compiler used to compile MDL source files.

mlib Librarian used to manage file images in a library file.

mlink Linker used to combine object files into a program.

rcomp Resource compiler used to compile resource source files.

rlib Resource librarian used to merge multiple resource files into one
resource file.

rsctype Type generator used to generate type descriptions for a group of
built-in functions that can be used to evaluate C expressions at
runtime.
MicroStation MDL Programmer’s Reference Guide 1-9

MDL Overview
Resource source files
MicroStation calls a command function to start a command. A command function has
the keyword cmdName or cmdNumber as part of its declaration. MicroStation calls a
command function when:

• The user keys in a command or selects it from a tool palette or other
menu.

• A program sends a key-in to MicroStation (for example, a key
statement in a user command).

A command function typically displays prompts and initializes MicroStation’s state
machine, specifying a set of state functions.

MicroStation calls state functions to handle user events while a command is
processed — most commonly data points, resets and key-ins. MicroStation manages
two sets of state functions:

• One set is for primitive commands — commands that can create,
delete or modify elements.

• The other is for viewing commands — such as ZOOM and
WINDOW AREA. Viewing commands cannot create, delete or modify
elements.

MicroStation allows a viewing command to temporarily “take over” the state machine
from a primitive command. This allows MDL developers to create primitive commands
with absolutely no concern about how they interact with viewing commands.

Dialog manager hooks are functions that process the events generated by the dialog
box manager and the interaction between MicroStation, dialog boxes and the user.

Functions may also be written to handle other events in MicroStation such as update,
undo or command parsing.

Resource source files
MicroStation uses resources to manage most data other than design files, cell libraries,
and font libraries. Most MDL applications contain resource source code. The most
common uses of resource source code are to define command tables, dialog boxes,
and message lists.

• A command table defines an application’s command syntax. When
an application is loaded, it tells MicroStation to add its command table
to the group of tables used by MicroStation to parse key-ins.

• A dialog box is a rectangular window on the screen that accepts and
processes user input.

• A message list is a list of messages used by an application.
1-10 MicroStation MDL Programmer’s Reference Guide

MDL Overview
Resource source files
An MDL application can include some or all of the following file types:

The reader who is familiar with a typical C development environment will notice many
parallels. For example, the .mc source files are analogous to .c source files. Object .mo
files resemble .obj or .o object files. The .mp files that mlink produces are similar to
the executable files (.exe) produced by other linkers.

However, concepts related to resources may not be as familiar. To an MDL program,
resources consist of data that the program will require at runtime. However, this data
does not replace all of a program’s data. This data is either the same every time the
program runs (as are the messages or dialog boxes that a program displays) or are
modified during execution and saved for the next execution (as are user preferences).
In MDL, resource data is defined in resource source .r files so that it is consistent with
C structure definitions. The resource compiler rcomp is provided to produce resource

Extension File description

.h Referred to as a header file or include file, which contains
definitions shared by multiple source files. Header files are included in
.mc files, .mt files and .r files.

.ma Referred to as an application file, a resource file that contains all
resources associated with one application. An application file can be
created with mlink or rlib.

.mc Referred to as an MDL source file.

.mke Referred to as a makefile, read by bmake to learn how to build an
application.

.ml Referred to as a library file, created and updated by mlib. Library files
typically contain MDL object files, but can contain any kind of file.

.mm Referred to as a map file, generated by mlink.

.mo Referred to as an object file, created by mcomp. These files are used
as input to mlink.

.mp Referred to as a program file, a special type of resource file that can
be merged with other resource files using rlib. A program file, created
by mlink, contains pseudocodes that MDL can interpret. A program file
is the simplest kind of application file.

.mt Referred to as a type file, a source file used to generate type
definitions to be used by the MDL C expression built-in function.
rsctype reads a type file and generates a resource source file.

.r Referred to as a resource source file. Some examples of data in
resource source files are dialog box descriptions, command tables and
messages. rcomp reads a resource source file and generates a
resource file.

.rsc Referred to as a resource file. rcomp generates most resource files.
MDL program and application files are also resource files.
MicroStation MDL Programmer’s Reference Guide 1-11

MDL Overview
MDL Application Organization
.rsc files from these source files. Multiple resource files can be merged using the
resource librarian, rlib. Since keeping an application together in one file is convenient,
program (.mp) files can be treated exactly like other resource files. Many MDL built-in
functions let you access the data stored by the resource manager.

Many MDL applications use only MDL source files, object files, and program files. For
these applications, the program file is the application file. For example, if example.mc
contains all source code for an application, enter the following commands to build the
application:

MCOMP EXAMPLE
MLINK EXAMPLE

More complicated applications generally merge resource and program files into an
application file. For these applications, mlink creates a program file that has the .mp
extension. rlib creates the application file by merging the program file with other
resource files.

MDL Application Organization
There are two basic approaches to developing applications using MDL. The first is to
use the input handling functions, activate MicroStation commands, and simulate
operator inputs, sequencing them as appropriate. The second approach is to call the
equivalent functions in the MDL built-in library, accomplishing the same tasks without
activating MicroStation commands. Of these two approaches, the second is distinctly
superior. Applications developed with built-in library functions are more reliable, more
predictable, and more efficient than those that sequence MicroStation commands.

Applications that sequence MicroStation commands have the following problems:

• They require a complete knowledge of inputs to the MicroStation
commands used.

• Making them work exactly like other MicroStation commands is
difficult. For example, they must manually allow windowing and
intermediate commands.

• Multiple applications cannot be active at the same time since one
application must drive MicroStation.

Therefore, when possible, MDL applications should not use the input handling
functions to sequence MicroStation commands.

All MicroStation primitive commands operate in a similar manner; they accept input as
data points, resets and key-ins. They also allow windowing and immediate commands
to operate transparently and work with selection sets if applicable. Good MDL
applications should operate similarly and, in effect, become part of MicroStation. Users
1-12 MicroStation MDL Programmer’s Reference Guide

MDL Overview
MDL Application Organization
should not be able to distinguish a properly constructed MDL program from an internal
MicroStation command.

The key to accomplishing this transparency is creating MDL applications that are
event-driven. Event-driven applications do not become suspended while awaiting a
specific type of input (such as a key-in or a data point). Rather, they establish
functions, or state handlers, that are called when various events occur. These
handlers process the input and establish new handlers when appropriate.

The following diagram of MicroStation’s input loop illustrates the concept of
event-driven applications:

Input
Handlers

Input
Queue

External
Application

Task ID
Dispatcher

State
Dispatcher

Data Point

Reset

Key-in

Figure 1.1 MicroStation Input Loop
MicroStation MDL Programmer’s Reference Guide 1-13

MDL Overview
MDL Examples
The input queue is at the heart of MicroStation’s input loop. All events input to
MicroStation are gathered by the input handlers (such as keyboard, mouse, tablet and
external programs) and put in the input queue.

When the event reaches the head of the queue, the task ID dispatcher processes it. The
dispatcher sends the event to the appropriate application. If your MDL application is
sequencing MicroStation commands, the application becomes responsible for fully
processing the event.

If no application is designated for the event, the default processor, the
state dispatcher, assumes control. The state dispatcher preprocesses the event and
then calls the appropriate state handler that you designated in your MDL application.

See “Input Handling Functions” in the MicroStation MDL Function Reference Manual
for more information on using the input handling functions. See “Command
Organization with State Control Functions” in the MicroStation MDL Function Reference
Manual for more information on using the state functions.

MDL Examples
MicroStation provides a number of MDL examples. The examples are all in
subdirectories of the mdl\examples directory.

The mdl\examples\doc directory illustrates calling sequences of the built-in functions.
The examples in the other directories illustrate fundamental concepts in the context of
applications. For more information on these examples and how to build and run them,
see “Sample MDL Applications” on page 14-1.
1-14 MicroStation MDL Programmer’s Reference Guide

2 MDE Workspace
The MDE workspace contains a visual environment that provides tools
to assist in the development and testing of MicroStation applications.
From the MDE command window, you can access the various editors,
help and the resource source generator and switch to other user
interfaces or workspaces.
To exit MDE and return to the system prompt, choose Exit from the File menu.

Tools Menu
The Tools menu in the Workbench command window is used to access the Workbench
tools. Instructions for using the tools can be found in “MDE Editing Tools” on page 4-1.

Command Table Editor (Ctrl+T)
The Command Table Editor tool is used to create and modify application command
tables, which define the commands used to operate an application. Command word
values and command word attributes can be changed and resaved in the binary
resource file.

Figure 2.1 The MDE Workspace
MicroStation MDL Programmer’s Reference Guide 2-1

MDE Workspace
Dialog Box Builder (Ctrl+B)
Dialog Box Builder (Ctrl+B)
The Dialog Box Builder tool is used to create new dialog boxes or edit existing dialog
boxes. Builder’s visual environment simplifies layout of items in a dialog box and
testing of the dialog box’s functionality. Using Builder, you can build a new dialog box,
associate access strings with dialog items, edit item-specific attributes, and save the
results in a binary resource file. Builder will also let you test the dialog as you add
items instead of making you wait until the application is compiled and loaded.

Icon Editor (Ctrl+I)
The Icon Editor tool is used to create and modify icons. You can create and modify
icons in either the standard MicroStation icon sizes (23 and 31 pixels square) or in any
size between 5 and 100 pixels on an axis. Brush, line, rectangle, and circle drawing
tools are provided.

RDE (Ctrl+R)
The RDE (Resource Development Environment) is a tool used to create and modify
resource files and header source files.

String List Editor (Ctrl+S)
The String List Editor tool is used to create and modify string list resources, which
define an application’s prompts and error messages. Strings can be altered and
additional strings can be added to existing string lists.

Generate Resource S6ource (CtrlR)
The Resource Source Generator tool is used to decompile binary resource files (both
.ma and .rsc files) into resource source file entries with resource item definitions and
all needed defines.

In addition to the development and testing tools, MDE includes the on-line MDL
reference, which has helpful information about MDL functions, such as argument lists
and return values, and related topics.

MDE On-line Help
MDE provides the MDL programmer with an on-line, slightly abridged version of both
the MDL Programmer’s Guide (this volume) and the MDL Function Reference Manual.
Every function that is listed in the Function Reference Manual is included in the On-
Line Help, complete with cross-references, for the convenience of the MDE developer.
2-2 MicroStation MDL Programmer’s Reference Guide

MDE Workspace
MDE On-line Help
✍ On-line help is an MDL application called USTNHELP. MDE loads
USTNHELP if it is not already loaded. The default operation for
USTNHELP is to display the on-line user documentation. To be presented
with a list of all help files, choose Available Files from the Help menu.

When the Help dialog is opened, you will be presented with either a list of available
help files or the top-level topics for the file you have selected. To select a help file or
view documentation on a particular topic or function, click your choice a single time.

As you traverse the help hierarchy, you can view your location in the tree by using the
Topic option button. Selecting higher levels will move you back up the tree.

✍ If you are searching for a particular function or subject, click the Search
button and use the Search dialog to find the documentation you require.
This method is especially fast if you ensure that the Topics Only toggle
button is highlighted.

Function descriptions in MDL On-line Help mirror those listed in the MDL Function
Reference Manual, though long functions are sometimes abridged for space
considerations. Information listed in the On-Line Help system includes:

• #include files required (if any)

• Arguments of the function

• A description of the function’s purpose and use

• Return values of the function

• Related functions

Any related functions are displayed as hypertext and can be instantly referenced by
double-clicking their names.

While the On-Line Help window is open, the help article for each selected topic or
function is displayed. Previous topics or functions can be recalled by clicking the
History button to open the History dialog.
MicroStation MDL Programmer’s Reference Guide 2-3

2-4 MicroStation MDL Programmer’s Reference Guide

3 Design Methodology
This chapter will help you plan the overall design of your MDL
application. It is strongly recommended that you spend some time
using the tips included in this chapter before you start writing code or
designing resources. The more planning you do before starting work,
the less time you will spend later redesigning and recoding should
you realize your efforts were misguided.
Where Do I Start?
This is a common question when creating a new application in a new development
environment, especially in a graphical user interface (GUI) environment where a
program’s structure tends to be more complex than in traditional top-down programs.

With over 1750 functions to choose from in MDL, the prospect of building an
application may seem daunting. A developer needs a “road map” for guidance through
the design and implementation of an MDL application.

Functional specification
Before you go into the details of your application’s design, you must first have a
functional specification that describes what the application is to perform. This
description should be from the user’s viewpoint. Few or no details specific to the
development environment (MDL in our case) should be present. If done well, a
functional specification of this sort leads directly to a high level design.

We recommended using the following approach to create a functional specification that
translates easily into a high level design.

Define the objects

Define the types of objects that users of the product will manipulate in terminology
that is familiar to the users. For example, GIS users work with parcels, so definitions of
these are in the functional specification. GIS users are also accustomed to thinking
about their work in terms of projects.
MicroStation MDL Programmer’s Reference Guide 3-1

Design Methodology
List the attributes of the objects
List the attributes of the objects

What shapes, sizes, colors, etc., are valid for each type of object? Furthermore, what
attributes are mutually exclusive? The rasticon MDL example allows icons to be either
23x23 or 31x31, or a user-defined size.

Define the object placement and manipulations

Once you have fully defined the objects and their attributes, define the ways in which
the objects are placed and manipulated. rasticon allows icons to be built in specific
ways and supplies specific drawing operations, such as lines, circles, points and
rectangles.

Other required functionality

Other items in the functional specification might be the types of database information
to maintain, report formats, and any other processing that does not involve object
manipulation.

High-level MDL application design
Determine MicroStation elements to use to represent application objects

The objects that are defined in the functional specification must be represented by
elements in the design file. For example, GIS represents parcel markers as centroids
(small rectangles).

Determine what settings must be collected from the user

The attributes of the objects listed in the functional specification help us determine the
form of our data collection and organization. We refer to this information in our MDL
application as settings. Once we know the settings to collect and how to organize
them, we can design dialog boxes that allow the user to set them.

Design element placement and manipulation tools

The part of the functional specification that defines object placement and manipulation
is the basis for a list of the application’s commands. Knowing this, we can build the
command tables and tool palettes, and start designing the element placement and
manipulation routines.

Design tools and settings boxes for other functionality

The other items in the functional specification also require user interface and
processing routines.
3-2 MicroStation MDL Programmer’s Reference Guide

Design Methodology
Project task list
Project task list
When the high level design is complete, a project task list emerges. Although the actual
list is different for each application, we can identify a superset of the items most likely
to appear on such a list.

Application initialization logic (main() processing)

This is the logic that sets up the application for all future processing. Among the tasks
to accomplish are:

1. Open resource files for dialog boxes, command tables, and message
lists.

2. Register message list IDs to be used for prompts or errors.

3. Load command tables.

4. Set user hooks for system events (For example, UNLOAD or
RELOAD.)

5. Register dialog hook functions with MicroStation’s Dialog Box
Manager.

6. Open the application’s initial dialog box.
After the initialization is complete, the main function returns and the
application waits for one of its dialog box hooks, user hooks, or
command functions to be invoked.

7. Build a cell library:
An application that requires a set of pre-defined graphic symbols to
represent the objects of the system should have its own pre-built cell
library. The cell library is generated by the developer and then
packaged with the application. For information on cells and how to
create them, see “Cell Placement and Manipulation” (General
procedures for working with cells) and “Menu Reference” (Settings
menu) in the MicroStation On-line Reference Guide. An example of
cell creation is in “Learning MicroStation” (Lesson 1) in the
MicroStation User’s Guide. For information about using cells in your
MDL applications, see “Element Creation” (mdlCell_create), and
“Cells” in the MicroStation MDL Function Reference Manual.

8. Create command tables:
A command table defines the syntax of an application’s commands.
Command tables are hierarchical with one main table branching
downward into a tree of subcommands. An application’s command
table is defined in a resource source file that is compiled to produce
two output files Ñ one is for the parsing and validation of key-ins, and
the other is a list of unsigned integers that uniquely identifies each
command.
MicroStation MDL Programmer’s Reference Guide 3-3

Design Methodology
Application initialization logic (main() processing)
For more information on the creation and use of command tables,
refer to “Building Applications” on page 7-1.

9. Build dialog boxes:
Dialog boxes present and collect data. See “Creating A Dialog Box” on
page 15-20 for a general procedure for building dialog boxes that
makes them easier to debug.

10. Write primitive command logic:
Write all of the application’s primitive command routines that handle
element placement and manipulation. Each primitive command
requires setting up state functions for the handling of events such as
data points, resets and to display dynamics - that is display an element
as it is dragged across the screen, sometimes referred to as
“rubberbanding.”

11. Write logic for immediate and utility commands:
An immediate command is a command that sets the value of an
internal settings variable. In MicroStation versions 4.0 and later, dialog
boxes are a much more elegant way to set the value of internal
variables, and as a result there is less need for immediate commands.
However, there are times when it may still be necessary to define
immediate commands. For instance, if you foresee the need to set an
MDL application variable from a MicroCSL program or user command,
an immediate command must be defined because MicroCSL programs
and user commands cannot display dialog boxes.
A utility command is a command that does not require interactive
input from the user and does not merely set application variables.

12. Build tool palettes:
Tools are graphic icons that start commands. When the user clicks on
a tool, the appropriate command is started. An application with
MicroStation’s “look and feel” has at least one tool palette if it provides
commands to the user.
In the initial stages of development, it is not absolutely necessary to
create a tool palette since commands can be keyed in. However,
testing is much easier when you can click on an icon to start a
command instead of keying it in.

13. External processing:
The degree of external processing used by an application varies from
none to all depending on the purpose, and sometimes the history, of
the application. A developer with an existing MicroCSL application
may only want to exploit parts of MDL. For example, an MDL “front-
end” could be written with a message queue or shared memory
interface to the MicroCSL program. On the other hand, a developer
may wish to totally re-implement an existing external program in
MDL. Somewhere in between the two extremes is a MicroCSL program
that has part of its functionality moved into MDL or vice versa.
An external program does not have to make MicroCSL calls.
3-4 MicroStation MDL Programmer’s Reference Guide

Design Methodology
Designing a Dialog Box
14. Create on-line help:
Like documentation, on-line help usually begins to take shape later in
the development cycle of a product. Implementing on-line help is a
matter of creating help resources containing textual information and
associating them with certain commands, dialog boxes, or dialog
items. Help resources can also be “stand-alone;” that is they can only
be referenced by manually traversing the help topics in MicroStation’s
Help dialog box.

At this point, we will focus on two tasks that require most of the work done in writing
an MDL application

• Building dialog boxes

• Writing the logic to implement commands.

Designing a Dialog Box
There are several steps required to build a dialog box.

1. Implement “dumb” dialog boxes, concentrating on the appearance of
the dialog box and its items. These are dialog boxes and items with no
commands, hooks, or access strings.

2. Add access strings where appropriate. An access string defines a
program variable to associate with a dialog item. This allows you to
change program variables (called settings) from a dialog box without
using a hook function. Element placement and manipulation
commands will reference these settings. The MDL debugger is ideal
for inspecting access strings while the application is running.
For information on access strings, see “Dialog Box Manager
Overview” on page 15-1. For more information on using the MDL
debugger, see “Debugging MDL Applications” on page 9-1.

3. You may need to extend the basic functionality of the dialog box
using dialog hooks. Hook functions establish relationships between
dialog items, initiate processing beyond what the dialog manager
does, or define the behavior of generic items (user-defined dialog box
items).
The rasticon example application uses a hook function to control the
display of the icon image as it is being built by tracking button and
drawing events.

For more information about dialog hooks, see “Dialog Box Manager Hook Functions”
on page 17-1.
MicroStation MDL Programmer’s Reference Guide 3-5

Design Methodology
Implementing Command Processing
Implementing Command Processing
There are two steps required to implement command processing:

1. Generate command tables and “stub” command functions. A stub
function outputs a message that says the command has been invoked
and then returns, allowing you to verify that all commands are defined
with correct syntax and that all command functions are associated
with the correct command.

2. The next step varies slightly, depending on the type of command.

Immediate Commands
The main command function needs to be changed to update the appropriate
application variable and return.

Utility Commands
The main command function may make one or more function calls beyond setting
application variables, but does not require user interaction. Setting up state functions is
not required. Utility commands may do database access such as scanning the design
file for specified elements. The stub function would typically have one top-level
function call which in turn breaks down into several other compact, modular routines.

Primitive Commands
The main command function for primitive commands must set up the state machine to
handle events such as data points, resets, and element selection. Do this by calling one
or more of the mdlState_… or mdlDynamic_… routines. This implies that routines to
handle the “state transitions” need to be coded.
3-6 MicroStation MDL Programmer’s Reference Guide

Design Methodology
Basic Application Architecture
Basic Application Architecture
The following diagram shows the relationships between the different parts of an MDL
application.

Dialog boxes and tool palettes comprise the user interface. Dialog boxes are generally
used to collect settings used by command processing routines. Tool palettes are used
to start commands graphically.

Primitive commands reference settings variables to create or modify elements. Primitive
commands can also access a database or resource file to obtain parameters for a
specific type of element. Although primitive commands are mainly used for interactive
placement and manipulation of elements, they are not limited in the number or type of
MDL functions that they can call.

Commands can create and display elements without writing them to the design file.
Utility commands are can make references to settings variables and design files. In fact,
a utility command could access any type of file.

User Interface

Tool
Palettes

Dialog
Boxes

Primitive Commands

Element
Creation

Utility Commands

Initiate
Commands

Element
Manipulation

DGN File

Non-DGN
Files

Other
Processing

Settings
MicroStation MDL Programmer’s Reference Guide 3-7

Design Methodology
Recommended Directory Structure
Recommended Directory Structure
Although you can use any directory structure, we offer one here to use as a guideline:

There are several reasons why we recommend this structure or one like it:

• The more you break down your files, the fewer file contention
problems you will have among your developers.

• Source code files, header files, and resource files are segregated to
make it easier to navigate through the files.

• (This is more of a file naming convention suggestion.) In the
resource/hooks directory, there is one .mc file (with the same root
filename) for each .r file that defines a dialog box in the resource
directory. This makes it easy to locate the hook functions for a dialog
box.

• The resource directory’s native language sub-directory contains
resource .r files and header .h files that store all of the text string
constants used by the application.
Any language-dependent strings in .mc files are removed from the
code and placed in a message list in one or more .r files in the native
language sub-directory. The source code references the string’s index
in the message list to obtain the string at execution time.
Any language-dependent strings in .r files are replaced with macros
(#define) in a header .h file(s) in the native language sub-directory.
They are defined as macros in a header file because the strings used
in dialog boxes are needed at compile time by the resource compiler.
There are at least two reasons why it is a good idea to separate
language-dependent text strings this way:
3-8 MicroStation MDL Programmer’s Reference Guide

Design Methodology
Recommended Directory Structure
• Messages can be globally changed without recompiling the source
code - only resource source files need to be recompiled. This means
the executable does not change, but rather just opens an updated
resource file. This is useful if an application is used in countries that
speak different languages. This is one part of a process called
internationalization.

• The program’s memory requirement is reduced since messages are
only loaded as needed. Also, MicroStation has logic that minimizes the
memory required by messages in message lists.
MicroStation MDL Programmer’s Reference Guide 3-9

3-10 MicroStation MDL Programmer’s Reference Guide

4 MDE Editing Tools
The following sections describe how to use the MDE editing tools to
work with MDL program resources. These tools prevent you from
having to create resource source files from scratch with an ASCII
editor, and instead let you concentrate on the task of designing your
application.
MicroStation Development Environment
The following tools are discussed in this chapter:

• Command Table Editor

• Dialog Box Builder

• Icon Editor

• RDE (Resource Development Environment)

• String List Editor

✍ Although you can also use these tools to edit MicroStation’s resources, you
cannot save changes directly to MicroStation’s resource file (ustation.rsc);
modifications to MicroStation resources must be written to another file
(.ma or .rsc). To make changes to the MicroStation resource file, you must:

1. Make a copy of MicroStation’s resource file.

2. Use the resource editors to change the desired resources and save the
changes back to the copy.

3. Replace MicroStation’s resource file with the modified copy.

W When saving a resource (command table, icon or string list), the resource
editor will overwrite existing resources with new resource information
when the resource IDs match. That is, if resource ID 15 in file A is edited
and saved back to file A or saved to an existing file B containing another
matching resource with an ID of 15, then the original resource information
in the file will be overwritten.
MicroStation MDL Programmer’s Reference Guide 4-1

MDE Editing Tools
File menu
Command Table Editor
The Command Table Editor is used to create and edit compiled (binary) command
table resources in a .ma or .rsc file. Support is provided for both the generic (resource
class CmdT) and MicroStation (resource class Cmds) command table resources, although
only generic command table resources can be created. For more information on the
creation and structure of command tables, see “Compiling an Application Command
Table” on page 7-11.

➤ To edit an existing command table resource

1. From the Tools menu, choose Command Table Editor.
The Command Table Editor dialog box opens.

2. From the File menu in the Command Table Editor dialog box, choose
Open File.
The Resource File to Open dialog box opens.

3. Select the file containing the command table resource you wish to edit
and click OK.
The Open Command Table Resource dialog box opens and displays
the list of command table resources that can be opened and edited.

4. Select the command table resource you wish to edit and click the OK
button.
The command table resource is then displayed for editing in the
Command Table Editor dialog box.

5. At this point, you can edit a command word entry in the command
table resource by double-clicking on the desired command word. This
causes the Command Options dialog box to open and display the
attributes of the selected command word. The command word can
now be modified. To save your changes, click the OK button and then
choose Save or Save To from the File menu in the Command Table
Editor dialog box.

File menu
New File (Ctrl+N)

Closes any open command table resources without saving and initializes a new
command table resource for editing.

Open File... (Ctrl+O)

Opens the Resource File to Open dialog box, from which a .ma or .rsc file can be
opened.
4-2 MicroStation MDL Programmer’s Reference Guide

MDE Editing Tools
New Command Table
➤ To open a Command Table

1. Select the MDL application or Binary (compiled) resource file that
contains the command table resource you wish to edit and click the
OK button.
The Open Command Table Resource dialog box opens. The Resource
column lists the command table hierarchy (1 for the root table and so
on).

2. Select the number of the command table resource to edit and click
OK.
The command numbers and strings for the command table resource
are displayed in the Command Table Editor dialog box.

New Command Table

Closes the open command table resource and creates a new command table resource
for editing in the open resource/application file if one exists.

Open Command Table... (Ctrl+T)

Opens a different command table resource from the open resource/application file.

Save (Ctrl+S)

Saves the open command table resource to the original file containing the resource. If
no file was opened, the Save to File dialog box is opened for you to select an already
existing binary (.rsc or .ma) file in which to save the command table resource.

Figure 4.1
Command Table
Editor dialog box
and Command
Options dialog box.
MicroStation MDL Programmer’s Reference Guide 4-3

MDE Editing Tools
Save To...
Save To...

Opens the Save to New Resource File dialog box, which is used to save the open
command table resource to a new or existing binary (.rsc or .ma) resource file.

Exit

Exits the Command Table Editor.

Edit Menu
Delete (Del)

Deletes the selected command table entry.

Append (Ctrl+A)

Opens the Command Options dialog box, which is used to create a new command
word and append it to the end of the open command table resource. The default
attributes are those of the selected command. After you have completed your edits,
click OK to change the command word.

Dialog Box Builder
Builder allows the MDL developer to create and modify dialog resources and save the
changes or new resource items to a binary (.rsc or .ma) file. Any item in a standard
dialog can be placed and manipulated in any configuration, and the dialog itself can be
resized. These modifications can be made by someone other than the developer so that
the tasks of user interface design and underlying product development can be
separated. For more information on the creation and structure of dialog resources, see
“Standard Dialog Box Items” on page 16-1.
4-4 MicroStation MDL Programmer’s Reference Guide

MDE Editing Tools
Dialog Menu
When “Dialog Box Builder” is selected from the MDE Tools menu, the following dialog
box and tool palette appear:

Dialog Menu
The Dialog menu contains selections for creating, selecting and deleting resource files,
and creating and selecting dialogs boxes to be edited. During an editing session, use
Load to open as many dialogs as you like at one time. This allows you to compare
dialog layouts for consistency, and to cut and paste items between dialogs to ensure
that they are identical.

New (Ctrl+N)

Creates a new, untitled dialog box. The new dialog is not associated with any resource
file until you select one of Save, Save To Existing or Save To New.

To Use

Create a new output resource file New

Open an existing output resource file Load

Close selected dialog box Close

Save changes to selected dialog box Save

Save changes to exiting resource file Save To Existing...

Save dialog to new resource file Save To New...

Delete selected dialog box Delete

Figure 4.2 Builder’s “Dialog Item List” dialog and “Tools” palette.
MicroStation MDL Programmer’s Reference Guide 4-5

MDE Editing Tools
Load (Ctrl+O)
Load (Ctrl+O)
Opens the Load Dialog dialog box. This dialog lets you select the resource file from
which to open the dialog box, which dialog within the resource file to open, and the
mode in which the dialog will be opened.

The dialog box you open will be listed in the Dialog field of the Dialog Item List
dialog.

Load Dialog Box As Read Only

A dialog box can be opened for editing or merely for review. If this check button is
highlighted, the dialog box may not be modified by the user. Items cannot be dragged,
the OK button in change dialogs is grayed out, and none of the save options can be
chosen from the Dialog menu.

Load Dialog Box As A Copy Of Original

If this check button is highlighted, a copy of the selected dialog box is made with no
associated resource file. Any changes made are not applied to the original dialog and
the dialog box is saved to the default Resource File provided that the Save To Existing
option has been selected.

Close

Closes the dialog box that is currently selected. If unsaved changes exist in the selected
dialog box, an Alert dialog box will appear, asking whether the original dialog box
should be overwritten.

Save (Ctrl+S)

Saves any changes made to the selected dialog. An additional Alert dialog box will
appear, asking whether the original dialog should be overwritten.

Figure 4.3
Load Dialog dialog box.
4-6 MicroStation MDL Programmer’s Reference Guide

MDE Editing Tools
Save To Existing... (Ctrl+E)
Save To Existing... (Ctrl+E)

Saves the selected dialog to an existing resource file. Saves are not allowed to be made
to new resource files.

Save To New... (Ctrl+W)

Saves the selected dialog to a new resource file. Saves are not allowed to be made to
existing resource files.

Delete (Ctrl+D)

Deletes the dialog box that is currently selected. An Alert dialog box will appear,
asking whether the selected dialog should be removed.

Edit Menu
The Edit menu contains selections for moving, copying, deleting, selecting and
arranging dialog box items. Cut, Copy and Paste can be used between multiple dialog
boxes for accelerated dialog box creation.

Cut (Ctrl+X)

Cuts the selected item(s) from the dialog. The items are placed in the clipboard and
can be pasted back into any open dialog. Any attributes associated with the items are
cut with them. The cut items are removed from the dialog item list.

To Use

Cut the selected dialog item(s) to the clipboard Cut

Copy the selected dialog item(s) to the
clipboard

Copy

Paste dialog item(s) from the clipboard into the
current dialog

Paste

Delete selected dialog item(s) Delete

Select all the items in the current dialog Select All

Bring the selected dialog item(s) to the front Bring To Front

Send the selected dialog item(s) behind any
other dialog items in the same area

Send To Back
MicroStation MDL Programmer’s Reference Guide 4-7

MDE Editing Tools
Copy (Ctrl+C)
Copy (Ctrl+C)

Copies the selected item(s) to the clipboard without affecting the original items
themselves. The copies of the items in the clipboard can be pasted into any open
dialog. Any attributes associated with the items are copied with them.

Paste (Ctrl+V)

Pastes the item(s) in the clipboard into the dialog that has the input focus. Any
attributes associated with the items are pasted with them. The pasted items are added
to the end of the dialog item list.

Delete (Del)

Deletes the currently selected dialog box item(s).

Select All

Selects all the items in the current dialog. This function is equivalent to individually
selecting each item while holding down the shift key or drawing a selection box
around all the items.

Bring To Front

Brings the selected item(s) in front of all other items in the dialog. Using this
command, you can control which items are selected first when you click an area that is
occupied by more than one item. An item’s front or back location affects its
selectability both when the dialog is being edited and when the dialog is being used.

Send To Back

Sends the selected item(s) in back of all other items in the dialog. Using this command,
you can control which items are selected first when you click an area that is occupied
by more than one item. An item’s front or back location affects its selectability both
when the dialog is being edited and when the dialog is being used.
4-8 MicroStation MDL Programmer’s Reference Guide

MDE Editing Tools
Options Menu
Options Menu

Test Dialog

Toggles the dialog between edit mode and test mode. Edit mode is Builder’s normal
mode, in which dialogs and the items in them can be added, deleted, and modified. In
test mode, the dialog behaves as it would in a normal MDL application; option buttons
can be changed, check buttons toggled, text in text items can be edited, scroll bars
moved, list boxes scrolled, color pickers selected, and level maps changed. Test mode
allows the dialog box designer to test the “usability” of the dialog box’s layout.

✍ All linkages to the application code (such as dialog item hooks and access
strings) are not connected and do not function in Builder’s test mode.

Preferences

Opens the Preferences dialog box. A value having units of Average Character Height is
provided in the Vertical Spacing text item. Multiple dialog box items which are selected
can then be separated by this value when the Alignment->Space Vertically menu item is
chosen.

Tools

Opens the Tools palette. The Tools palette is used to create new dialog items.

Dialog Attributes...

Opens the Dialog Box Attributes dialog box. In this dialog you can change the dialog’s
many attributes, such as its name, modality, help Id#, type, width, height and hook Id#.

✍ The Dialog Box Attributes dialog can also be opened by double-clicking in
an unoccupied area of the dialog box whose attributes are to be changed.

To Use

toggle the dialog between edit mode and test mode. Test Dialog

open the Preferences dialog box. Preferences

open the Tools palette. Tools

open the Dialog Box Attributes dialog box. Dialog Attributes...

open the appropriate dialog item editor. Item Attributes

Figure 4.4
Preferences dialog box.
MicroStation MDL Programmer’s Reference Guide 4-9

MDE Editing Tools
Item Attributes... (Ctrl+A)
Item Attributes... (Ctrl+A)

Opens the attributes dialog box that is associated with the type of item that is selected.
Fifteen different attribute dialogs exist, one each for text, label, checkbutton, groupbox,
optionbutton, scrollbar, pushbutton, multiline text, listbox, colorpicker, levelmap, scale,
radiobutton, sash and generic items.

✍ Item attribute dialogs can also be opened by double-clicking the item
whose attributes are to be changed. Item attribute dialogs do not exist for
the horizontal and vertical separator items.

Figure 4.5
Text item attributes dialog
box, can be opened by
double-clicking on any
text item.

Figure 4.6
Option Button item attributes
dialog box can be opened by
double-clicking on any option
button item.
4-10 MicroStation MDL Programmer’s Reference Guide

MDE Editing Tools
The Tools Palette
The Tools Palette
The tool palette has many more types of dialog items when used in the mdl
environment than when used in the MicroStation Basic environment.

To Use

Select one or more items to be modified.
.

 Item Selection Tool

Add a single-line, user-editable, text box. Place Text Item

Add static text label. Place Label Item

Add a togglebutton. Place ToggleButton Item

Add a labeled box to group related items. Place GroupBox Item

Add a user-selectable, option button. Place OptionButton Item

Figure 4.7
Push Button item attributes
dialog box can be opened by
double-clicking on any push
button item.

Figure 4.8
Label item attributes dialog
box can be opened by
double-clicking on any
label item.
MicroStation MDL Programmer’s Reference Guide 4-11

MDE Editing Tools
Dialog Item Placement
Dialog Item Placement

Dialog items are placed using their respective tools listed on the previous page. Items
are placed with generic names and sizes. Names and other item attributes can be
changed using the methods described in the “Item Attributes...” section above. Item
sizes and positions can be manipulated in the Dialog Item List dialog.

✍ The default item placement mode is “single shot;” that is, if you single-
click on the item placement tool, only one occurrence of the item can be

Add a scroll bar. Place ScrollBar Item

Add a push button. Place PushButton Item

Add a color-picker item. Place ColorPicker Item

Add a level map item. Place LevelMap Item

Add a scale item. Place Scale Item

Add a radio button. Place RadioButton Item

Add a sash item. Place Sash Item

Add a generic item. Place Generic Item

Add a multi-line, user-editable, text box. Place Multiline Text Item

Add a user-scrollable list box item. Place ListBox Item

Add a horizontal separator. Place Horizontal Separator

Add a vertical separator. Place Vertical Separator

Add a menu bar item. Place MenuBar Item

Add a combo box item. Place ComboBox Item

Add a spin box item. Place SpinBox Item

To Use
4-12 MicroStation MDL Programmer’s Reference Guide

MDE Editing Tools
Alignment Menu
placed before Builder reverts to the item selection tool. However, if you
double-click on an item placement tool, Builder enters a mode where
every data point placed in the dialog creates another occurrence of the
item. Reset returns to the item selection tool.

Alignment Menu
The Alignment menu contains selections that will help you create dialog boxes with
aligned items for consistency. Many of the selections, when used in conjunction with
one another, can save you large amounts of time from manually aligning dialog items.

Align [Left|Right|Top|Bottom]

Aligns all the selected items by their left, right, top or bottom edges. Left and right
alignment does not affect vertical position, and top and bottom alignment does not
affect horizontal position.

Center on Horizontal, Center on Vertical

Aligns all the selected items about a common horizontal or vertical axis. Horizontal
centering does not affect vertical position, and vertical centering does not affect
horizontal position.

Spread Horizontally, Spread Vertically

Spreads all the selected item(s) out an equal distance from one another and from the
edges of the dialog box. Horizontal spreading does not affect vertical position, and
vertical spreading does not affect horizontal position.

Space Vertically

Aligns all the selected items so that they adjoin one-another vertically. Horizontal
position is not affected. This menu bar item can be used in conjunction with the
Preferences dialog box discussed earlier.

Make Same Size

Resizes all selected items to the same size. The size to which the items are changed is
determined by the first item selected. Vertical and Horizontal position are not affected.
MicroStation MDL Programmer’s Reference Guide 4-13

MDE Editing Tools
Icon Editor
Icon Editor
The Icon Editor is used to create and edit compiled (binary) icon resources in a .ma or
.rsc file. You can create and edit icons in either the standard MicroStation icon sizes (23
or 31 pixels square) or of any size between 5 and 100 pixels on an axis.

➤ To edit an existing icon resource

1. From the Tools menu, choose Icon Editor.
The Icon Editor dialog box opens.

2. From the File menu in the Icon Editor dialog box, choose Open File.
The Resource File to Open dialog box opens.

3. Select the file containing the icon resource you wish to edit and
click OK.
The Open Icon Resource dialog box opens and displays the list of
icon resources that can be opened and edited.

4. Select the icon resource you wish to edit and click the OK button.
The icon resource is then displayed for editing in the Icon Editor
dialog box.

5. At this point, you can edit the icon by using the Brush, Line, Rectangle
and Circle drawing tools to set, clear and toggle pixels. The tool, pixel
setting mode (Set, Clear or Toggle), and icon size are set with option
menus in the Icon Editor dialog box. To shift the position of the entire
icon one pixel at a time, use the buttons below the pixel map.

Figure 4.9
Icon Editor dialog box.
4-14 MicroStation MDL Programmer’s Reference Guide

MDE Editing Tools
File menu
File menu
New File (Ctrl+N)

Closes open icon resources without saving and initializes a new icon resource for
editing. To set the icon size, use the bottom option menu. To specify a non-standard
size, choose User from the option menu and use the User Size dialog box.

Open File... (Ctrl+O)

Opens the Resource File to Open dialog box, which is used to open a .ma or .rsc file.

➤ To open a .ma or .rsc file

1. Select the MDL application or binary (compiled) resource file that
contains the icon resource you want to edit and click the OK button.
The Open Icon Resource dialog box opens.

2. Select the number of the icon to edit and click OK.
The icon is displayed for editing in the Icon Editor dialog box.

New Icon

Closes the open icon resource and creates a new icon resource for editing in the open
resource/application file if one exists. To set the icon size, use the bottom option
menu. To specify a non-standard size, choose User from the option menu and use the
User Size dialog box.

Open Icon... (Ctrl+I)

Opens a different icon resource from the open resource/application file.

Save (Ctrl+S)

Saves the open icon resource to the original file containing the resource. If no file was
opened, the Save to File dialog box is opened for you to select an already existing
binary (.rsc or .ma) file in which to save the icon resource.

Save To...

Opens the Save to New Resource File dialog box, which is used to save the open icon
resource to a new or existing binary (.rsc or .ma) resource file.

Exit

Exits the Icon Editor.
MicroStation MDL Programmer’s Reference Guide 4-15

MDE Editing Tools
Edit Menu
Edit Menu
Fill Shapes

If Fill Shapes is on, the current pixel operation mode (Set, Clear or Toggle) is applied
to all pixels inside the boundaries of a shape placed with the Circle or Rectangle tool.

Clear

Clears the current icon map and name information (that is, clears all pixels and the
icon name in the current icon definition).

Shift [Left|Right|Up|Down]

Shifts the icon one pixel left, right, up, or down. Any icon pixels that are shifted off the
side of the editing grid are lost.

Import Menu
Graphics

Imports graphics with the current fence content. A fence must be place prior to
executing the command.

Cell

Imports the graphic representation of a cell from the current cell library.

Resource Development Environment (RDE)
The Resource Development Environment is a tool for creating and modifying resource
source files and header source files. Resource source files, .r files, contain a description
of resources such as dialog box item resources. Header files contain the definitions of
the macros used in the description of resources. The application is started with the
MicroStation command, mdl load rde, (or via the MDE user interface).

Macros refer to the #define preprocessor declarations in header files. A binary
resource file (.rsc file) or resource source file (.r file) can be loaded into RDE. When
you choose to edit a resource, the appropriate graphical resource editor, such as the
Dialog Builder, is launched.

In the case of the Dialog Builder resource editor, it is possible to modify the names and
contents of macros. See “Dialog Box Builder” on page 4-4 for further details.
4-16 MicroStation MDL Programmer’s Reference Guide

MDE Editing Tools
File Menu
The graphical resource editors manipulate the binary form of the resource. However,
any changed or new resources are saved into the resource text file and its appropriate
header files (.h files).

File Menu
The File menu contains selections for creating and selecting resource files. Multiple
files may be open simultaneously.

New… (Ctrl+N)

Opens the “New Resource File” dialog box for the user to create a resource source file.
Typically filenames have a .r extension. The file only gets created when the user saves
newly added resources to the resource file. The Default header files for all language
dependent text and for the header file containing the id values of the resources are
named. The binary resource file that is used by the graphical resource editor is also
automatically given a default name. The header files have the same path as the
resource source file but have a .h extension. The binary resource file has got the
extension .tmp which indicates that this is a temporary file that will be destroyed when
you have finished with the resource file.

Open… (Ctrl+0)

Opens the “Select Resource File” dialog box. The file can be opened as either a binary
resource file (.rsc) or a text resource file (.r). If the file is opened as a source file, it is
compiled and a binary resource file with a .tmp extension is generated. If the file is

To Use

Create a new resource file New…

Open an existing resource file Open…

Close an opened or newly created resource file Close

Generate source code for a binary resource file Save

Exit Exit

Figure 4.10
Resource Development
Environment dialog box.
MicroStation MDL Programmer’s Reference Guide 4-17

MDE Editing Tools
Close (Ctrl+C)
opened as a binary resource file, the source is generated in exactly the same way as a
new resource source file. A list of all the resources within the opened resource file is
displayed in the list box of the RDE dialog box.

Close (Ctrl+C)

Closes the currently selected resource file and deletes the binary resource file if it is a
temporary file, i.e., has a .tmp extension. Multiple resource source files can be open
simultaneously. The currently selected source file is displayed in the “Res Files” option
button in the RDE dialog box. All editable resources are displayed within the RDE
dialog’s listbox.

Save (Ctrl+S)

Generates source code for the currently selected resource file. The resource source file
and its appropriate header files are updated. Read only files and files in the system
include directory are not updated. A backup copy of each saved file in the form
<filename.ext> is created, where .ext is the original extension with a “2” appended on
the end of it. To modify existing source code, it is necessary to save the changes from
the graphical resource editor. Presently, the Builder application is the only resource
editor which saves both the binary and text formats of the resource. The save option is
equivalent to selecting the save option from the Dialog Builder. Save is only enabled
for new resource files.

Exit (Ctrl+X)

Exits RDE.

Resource Menu
The Resource menu contains selections for adding a new resource or editing an
existing resource.

Add… (Ctrl+A)

Adds a new dialog box resource to the current resource file. If the Dialog box builder
application is not loaded, it is launched and a new dialog box resource is displayed.
You can edit the new resource and save it from the builder application.

To Use

Add a new resource Add…

Edit an existing resource Edit…
4-18 MicroStation MDL Programmer’s Reference Guide

MDE Editing Tools
Edit… (Ctrl+E)
Edit… (Ctrl+E)

Launches the dialog box builder application if it is not already loaded and displays the
dialog box that you select to edit. This operation can also be accomplished by double
clicking on the resources list box in the RDE dialog box.

Options Menu
The Options menu contains selections for displaying the default files and the include
paths used to search for header files of a resource source file.

Include Dir…

Displays the “Paths for Include Files” dialog box. The system, local, and language
include directories are read-only items that cannot be modified. Only the alternative
include directories can be modified. The format for the alternative include directories
is:

<directory[PATH SEPARATOR[directory]]>

where the [] indicate optional parameters. Note the last character of this field must
NOT be a path separator.

The system include directories default can be overwritten by setting the MS_RDE_SYSINC
configuration variable. The local include path contains the directory where the

To Use

Show the include paths for the runtime compiler Include Dir…

Show the default resource and header files Default File…

Figure 4.11
Paths for Include Files
dialog box.
MicroStation MDL Programmer’s Reference Guide 4-19

MDE Editing Tools
Default File…
resource file was opened. The language include path contains the language
subdirectory off the local include path directory.

Default File…

Displays the default resource source file, binary resource file, default ids file and
language header file. Only the ids and language header files may be modified. The
grayed out option items in these option buttons indicate read only files.

Opening and Closing Files
When a resource source file is opened, it is compiled and a temporary binary resource
file is created. The File > Close menu option destroys this temporary file and removes
the resource file name from the Res File option button.

If the resource source file cannot be opened, the “Compiler Error Report” dialog box
displays a report of the reasons for not being able to compile the resource file. The
most common reason is that an include path has been omitted so the compiler couldn’t
find a header file. To fix the problem add the appropriate header file by pressing the
“Inc Files…” pushbutton. This opens the “Paths for Include Files” dialog box. This
dialog box can also be selected from the Options > Inc Dir… menu option. The
omitted directory can be typed into the alternative include paths text item.

Example of creating source code for a new resource
The process of creating new resources is simple and straightforward.

➤ To create a dialog box with a few items

1. From the RDE File menu choose New…
The New Resource File dialog box is displayed.

2. In the New Resource File dialog, key-in the name of the resource file
you want to create with a .r extension. Click the OK button.
The new resource filename is displayed in the Res File option button
in the RDE dialog box. The default header files for the IDs and the
language-dependent portion are given default names.

Figure 4.12
Default Header Files
dialog box.
4-20 MicroStation MDL Programmer’s Reference Guide

MDE Editing Tools
Example of modifying source code for an existing resource
3. From the RDE Resource menu choose Add…
The graphical dialog box builder is loaded and a new, editable
Untitled dialog box is displayed.

4. Using the dialog builder, add a text item and a toggle button to the
dialog box. Refer to the chapter on “Adding dialog boxes to Macros”
for more details about using the Dialog Builder graphical editor.

5. Save the dialog box from the Dialog Box Builder by pressing the Save
push button or by selecting the Fil e >Save menu item.
The resource file, the IDs header file, and the language header file are
generated in the same directory. Once the resource has been saved
the dialog box is displayed in the Resource list box of the RDE dialog
box.

6. From the RDE File menu choose Close.
The resource source file is closed and removed from the “Res Files”
option button in the RDE dialog box. Check that the resources were
created properly by reopening the resource source (.r) file that you
created in RDE.

It is also possible to create a new resource by loading a .rsc file and choosing the
File > Save menu option in RDE.

Example of modifying source code for an existing resource
Modifying a resource involves a similar workflow to creating a new resource.

➤ To create a new resource

1. Choose RDE File > Open…
The “Select Resource File” dialog box displays.

2. In the Select Resource File dialog, key-in the name of the resource file
you want to create with a .r extension. Click the OK button.
The new resource filename is displayed in the “Res File” option button
in the RDE dialog box. The default header files for the IDs and the
language-dependent portion are given default names.

3. From the list box in the RDE dialog box, double click on the dialog
box that you want to edit.
or

Choose Resource > Edit… from the RDE dialog box menu.

The graphical dialog box builder is loaded and the selected dialog box
is displayed.

4. Using the dialog builder, move the dialog items around and/or change
the attributes of the dialog box or the items.

5. Save the dialog box from the Dialog Builder.
MicroStation MDL Programmer’s Reference Guide 4-21

MDE Editing Tools
Limitations
An alert dialog box displaying the message “Update Source Code for
dialog id #NUM” is shown (where #NUM is the number of the dialog
box that you are saving.

6. Press the OK push button to generate new source for the dialog box
resource that you created in builder.
The resource file and all the header files in which macros have
changed are updated.

7. Choose File > Close from the RDE dialog box menu.
The resource source file is closed and removed from the “Res Files”
option button in the RDE dialog box and the temporary binary
resource file is deleted.

Limitations
Complex macros are defined in terms of other macros, e.g. the complex macro is made
up of sub-macros. If the value of a complex macro changes, it is very difficult to
determine which sub-macro has changed. RDE does not modify these complex macros
but instead replaces the field of a resource with a value. For example, suppose we
have the following macro and resource definition. Before the value of the WIDTH macro
changes:

#define WIDTH 20*XC+OFFSET /* XC and OFFSET are submacros */
DialogBoxRsc DIALOGID_Elements
{

DIALOGATTR_DEFAULT, WIDTH, HEIGHT
...

}

After the width field is modified:

#define WIDTH 20*XC+OFFSET
DialogBoxRsc DIALOGID_Elements
{

DIALOGATTR_DEFAULT, 25*XC, HEIGHT
...

}

If the macro WIDTH is the width specification field of a dialog box resource that
changes, it will be replaced with an expression in terms of dialog coordinate units such
as 25*XC. The definition of the WIDTH macro is not modified.

RDE does delete resources but comments out the resource with an #ifdef (HAS BEEN
DELETED) …#endif statement. Macros are not deleted but a comment is displayed
indicating that the macro is possibly not being used. When the user deletes a dialog
box resource from builder, the row containing the dialog box resource is removed
4-22 MicroStation MDL Programmer’s Reference Guide

MDE Editing Tools
Macro Description Dialog Box
from the resources list box. However, no changes are made to the source code until
you perform the save option.

RDE treats subresources, enclosed by an #ifdef ... #endif statement, as being
commented out. However, the resource compiler may compile this same code. This
causes the indices of the subresources in the binary format to not correspond to those
of the source representation. When this resource is modified, the source is not updated
correctly. In order to correctly update this resource, temporarily remove all #ifdef ...
#endif comments.

Individual resources cannot be saved. The entire resource file with all the changes is
updated.

Any modifications to the database cannot be undone. If a macro name or value is
changed, it will be updated even if the resource was not saved. For example, if the
macro values in resource 1 are modified but not saved and resource 2 is saved, all the
changes in resource 1 will automatically be saved as well. If the user makes changes to
a dialog box and then closes the dialog box without saving, the dialog box resource is
dimmed out in the resources listbox of the RDE dialog box. This resource may not be
edited. To edit the resource, the file containing the resource must be closed and
reopened.

Macro Description Dialog Box
Although Builder works with resources in binary format, you can also add and change
the macro of a field in a resource.

The Macro Description dialog box opens when the user double-clicks in a text field in
the dialog attributes dialog box or one of the dialog item editors dialog boxes. The
Macro Description dialog is opened only if the dialog box has source code associated
with it, i.e., the dialog box has been opened within RDE. The word macro is used in a
different context here as opposed to BASIC macros. Here, macros refer to #define
preprocessor declarations used in header files.

Use the dialog box to modify values of macros and its contents. The macro refers to
the text field you double-clicked on to bring up this dialog. You can change an existing
macro by changing the New value text field or you can create a new macro by typing
in a new name in the macro field. If you type in an already existing macro, the
contents of the macro are automatically displayed.
MicroStation MDL Programmer’s Reference Guide 4-23

MDE Editing Tools
String List Editor
Language specific macros are enclosed in quotes. When editing the value of this type
of macro, you must ensure that the enclosing quotes are retained.

String List Editor
The String List Editor is used to create and edit compiled (binary) message list
resources in a .ma or .rsc file. It is not yet possible to edit other types of string lists
(that is, string lists with more than one information field).

➤ To edit an existing message list resource

1. From the Tools menu, choose String List Editor.
The String List Editor dialog box opens.

2. From the File menu in the String List Editor dialog box, choose Open
File.
The Resource File to Open dialog box opens.

3. Select the file containing the message list resource you wish to edit
and click OK.
The Open Message List Resource dialog box opens and displays the
list of message list resources that can be opened and edited.

4. Select the message list resource you wish to edit and click the OK
button.
The message list resource is then displayed for editing in the String
List Editor dialog box.

At this point, you can edit a message list entry in the message list
resource by selecting the list entry and then either pressing <Tab> or
<Return> or clicking in the Edit: field of the dialog box. This causes
the string for the message to be displayed for editing in the Edit: field.
After you edit the string, press <Tab> or <Return> to accept the string
modifications. To save the changes, choose Save or Save To from the
File menu.

Figure 4.13
Macro Description
dialog box.
4-24 MicroStation MDL Programmer’s Reference Guide

MDE Editing Tools
File menu
File menu
New File (Ctrl+N)

Closes any open message list resources without saving and initializes a new message
list resource for editing.

Open File... (Ctrl+O)

Opens the Resource File to Open dialog box, which is used to open a .ma or .rsc file.

➤ To open a .ma or .rsc file

1. Select the MDL application or binary (compiled) resource file that
contains the message list resource you want to edit and click the OK
button.
The Open String List Resource dialog box opens.

2. Select the number of the message list resource to edit and click OK.
The messages are displayed for editing in the String List Editor dialog
box.

New Message List

Closes the open message list resource and creates a new message list resource for
editing in the open resource/application file if one exists.

Open Message List...

Opens a different message list resource from the open resource/application file.

Figure 4.14
String List Editor
dialog box.
MicroStation MDL Programmer’s Reference Guide 4-25

MDE Editing Tools
Save (Ctrl+S)
Save (Ctrl+S)

Saves the open message list resource to the original file containing the resource. If no
file was opened, the Save to File dialog box is opened for you to select an already
existing binary (.rsc or .ma) file in which to save the message list resource.

Save To...

Opens the Save to New Resource File dialog box, which is used to save the open
message list resource to a new or existing binary (.rsc or .ma) resource file.

Exit

Exits the String List Editor.

Edit Menu
Delete Member (Del)

Deletes the selected message list string (the text is removed from the entry but the
entry remains).

Append Members (Ctrl+A)

Appends 10 empty list entries to the end of the currently open message list resource.
4-26 MicroStation MDL Programmer’s Reference Guide

5 A Comparison of MDL and C
Closely resembling ANSI C, the MDL language is a dialect of the C
programming language. This chapter describes the MDL language and
compares it to ANSI C.
This chapter also discusses the pragmas supported by the MDL
compiler (mcomp) and tells how the MDL compiler handles structure
definitions. Understanding how mcomp processes structure
definitions is important if data will be shared between MDL programs
and other C programs. mcomp is discussed fully in “Building
Applications” on page 7-1.

Major Differences Between MDL and ANSI-C
MDL C has these major differences from ANSI-C:

• In ANSI-style function declarations, mcomp does not support types
smaller than integer except on the Windows platform. If mcomp
encounters a char or short declaration in an ANSI-style function
declaration, it produces an error, because the character size is smaller
than the integer size. This restriction does not affect pointer
declarations such as char *, since the pointer size and integer size are
the same.

• mcomp supports structure assignments. However, structures cannot
be passed as function arguments and functions cannot return
structures.

• MDL provides many built-in functions and variables that mcomp
recognizes. These functions and variables cannot be redefined,
although they can be redeclared. For example, malloc is an MDL
built-in function. The char *malloc(); declaration can appear in the
source code. However, if mcomp encounters a declaration for malloc
and the declaration includes a function body, mcomp generates an
error message saying that built-in functions cannot be replaced.
MicroStation MDL Programmer’s Reference Guide 5-1

A Comparison of MDL and C
Pragmas
• Local variable space used for automatic variables is restricted to 32 Kb
per function.

• cmdName and cmdNumber are reserved words. cmdName specifies that the
function is a command and that its name can be used in a
MicroStation MDL COMMAND key-in. For more information on this
command, see “Running MDL Applications” on page 8-1. cmdNumber
followed by a list of command numbers specifies that the function is a
command that can be accessed from the list of command numbers.
See “Command Parser” on page 6-14 for more information.

• Enumerated types are not supported.

• Bitfields must be unsigned.

• float types are treated as double. float is a synonym for double.

• A storage class must be specified before the type. For example,
extern int test; is accepted, but int extern test; is not.

• In each compile, an include file with a given name is read only once,
even if several #include directives request it.

• Identifier length is unrestricted.

• The mcomp preprocessor does not support trigraphs, stringization, or
token pasting/concatenation. However, it supports string
concatenation and the following preprocessor directives: #include,
#define, #undef, #if, #ifdef, #ifndef, #line, #else, #elif and
#endif. Both #if and #elif require an expression that results in an
integer constant. For example, #if defined (mdl) is valid.

• All lines containing preprocessor directives must contain # as the first
character. This differs from ANSI C, where the line can contain white
space before the #.

Pragmas
Pragmas are preprocessor directives that provide MDL-specific information in C source
files. To specify a pragma, enter #pragma <pragma-name> followed by the arguments.
The following pragmas are available:

Pragma: alias
Syntax

#pragma alias “aliasname”
5-2 MicroStation MDL Programmer’s Reference Guide

A Comparison of MDL and C
Summary
Summary

Assign an alias name to a static resource definition in a .r file.

Relevant Compilers

rcomp

Detailed Description

Typical resource definitions in a .r file only allow for the type and ID of a resource
declaration. The type ID, or resourceClass of a resource is assigned to the typedef
used to declare the resource instance.

typedef struct mystruct
{

int member;
} MyStruct;
resourceClass MyStruct RTYPE_MyTypeID;

The individual resource ID is assigned in the declaration of a specific resource:

MyStruct RSCID_MyID=
{

5
};

Optionally, an alias could be assigned to a specific resource using the alias pragma.
The pragma must be specified within the opening bracket, ‘{‘, of the resource
initialization stream.

Example

MyStruct RSCID_MyId=
{

#pragma alias “myAlias”
5

};

Such a compiled resource could be loaded at runtime with the
mdlResource_loadByAlias function call:

MyStruct *rscDataP;
rscDataP = mdlResource_loadByAlias(rfHandle, RTYPE_MyTypeId,

RSCID_MyId, “myAlias”);
MicroStation MDL Programmer’s Reference Guide 5-3

A Comparison of MDL and C
pragma: incompatiblePointerParameters, incompatiblePointers,
pragma: incompatiblePointerParameters, incompatiblePointers,
incompatibleReturn, noAnsiDeclaration, noReturnStatement,
undeclaredFunction
Syntax

#pragma <name> <option>

The valid values for <name> are incompatiblePointerParameters,
incompatiblePointers, incompatibleReturn, noAnsiDeclaration,
noReturnStatement and undeclaredFunction.

Summary

The valid values for <option> are push, pop, warn, error and ignore. The option push
must be followed by warn, error or ignore. If push is specified, the previous setting
for <name> is saved before the new value is used. Each of these pragmas use the
following syntax for restoring a previous value:

#pragma <name> pop

Relevant Compilers

mcomp

General Description

These pragmas were all added to mcomp in MicroStation 95. The MicroStation 95
mcomp detects many possible problems that previous versions did not detect. These
pragmas control whether mcomp ignores these conditions, reports the condition as
error or reports the condition as a warning.

Detailed Description, incompatiblePointerParameters

The pragma incompatiblePointerParameters controls what happens when mcomp
compares different declarations of the same function and finds that one of the
parameters is a pointer in both declarations but they are pointers to different types in
the different declarations. If the option is error, it reports an error. If the option is
warn, it issues a warning when pointers do not point to the same type. The default
setting of this pragma is warn. That is, if the pragma is not used mcomp issues a
warning whenever it encounters incompatible pointer parameters. If the option is
ignore, it does not report the difference, mcomp considers the two parameters
equivalent if both are pointers. It does not matter to what type they point. To illustrate,
incompatiblePointerParameters controls how the compiler responds to the following
condition:

int function_1(int *pArg);
int function_1(double *parg);
5-4 MicroStation MDL Programmer’s Reference Guide

A Comparison of MDL and C
Example, incompatiblePointerParameters
Example, incompatiblePointerParameters

The following statement causes mcomp to generate an error if two declarations of a
function have conflicting pointer parameters.

#pragma incompatiblePointerParameters error

To change the handling of incompatible pointer parameters for a section of code,
bracket the section of code with:

#pragma incompatiblePointerParameters push error

and

#pragma incompatiblePointerParameters pop

Detailed Description, incompatiblePointers

The pragma incompatiblePointers is used when comparing types in an assignment
statement or passing an argument to a function. incompatiblePointers controls how
the compiler responds to the following condition:

int function_1(int *pArg);
int function_2(double *p)
{

return function_1(p); /* function_1 expects “int *” */
}

That is, incompatiblePointers determines how mcomp responds to detecting
incompatible pointers. This applies to any place that mcomp may compare pointers
except for checking multiple declarations. It applies to assigning to a pointer variable
and passing parameters. It does not apply to explicit casts, only to implicit. The
following example shows how to use the explicit cast to override the error checking:

{
int *pInteger;
double *pDouble;

#pragma incompatiblePointers ignore
pInteger=pDouble; /* pragma, NO message */

#pragma incompatiblePointers warn
pInteger=pDouble; /* warning is issued */
pInteger=(int *)pDouble; /* cast, NO message */

}

The default value for incompatiblePointers is warn.
MicroStation MDL Programmer’s Reference Guide 5-5

A Comparison of MDL and C
Detailed Description, incompatibleReturn
Detailed Description, incompatibleReturn

The pragma incompatibleReturn controls what happens when mcomp compares
different declarations of the same function and finds that their returns are pointers to
different types. If the option is error, it reports an error. If the option is warn, it issues
a warning. If the option is ignore, it does not report the difference. If the pragma is
not used, a warning is issued.

Detailed Description, noAnsiDeclaration

The pragma noAnsiDeclaration controls what happens if mcomp detects a function
call using the name of a function that has not been declared with a prototype. As with
the other pragmas in this section, it can ignore it or can issue an error or warning. Note
that a declaration with no argument list and no function body is not considered a
prototyped declaration. It tells the compiler that nothing is known about the
arguments. To tell the compiler that a function takes no arguments, use (void) as the
argument list. That is:

function_1();

says nothing is known about the arguments but:

function_1(void);

says that the function has no arguments. A declaration with no argument list and a
function body tells the compiler that there are no arguments. Therefore, it is
considered a prototyped function declaration. The default setting for the pragma
noAnsiDeclaration is ignore.

Two of the most common conditions caught by this pragma are function declarations
of the format int function(); and built-in functions that are not declared. The
declaration int function(); tells mcomp that nothing is known about the
parameters. This severely limits the ability of the compiler to detect errors. mcomp has
built-in knowledge of the built-in functions, but knowledge is limited. More
information can be provided by including the appropriate .fdf and .h files in your
program.

Example: The first of the following examples causes mcomp to generate an error if it
encounters a call to a function that does not have an ANSI-style declaration. The
second example pushes the current setting of noAnsiDeclaration, and sets it to warn.
The final example restores the previous setting for noAnsiDeclaration. In this
example, it restores it to error.

#pragma noAnsiDeclaration error
#pragma noAnsiDeclaration push warn
#pragma noAnsiDeclaration pop
5-6 MicroStation MDL Programmer’s Reference Guide

A Comparison of MDL and C
Detailed Description, noReturnStatement
Detailed Description, noReturnStatement

The noReturnStatement pragma controls what mcomp does when it detects a function
that is missing a return statement. Although it is valid in C to omit a return statement, it
is generally an error. As with the other conditions described in this section, mcomp can
ignore it or issue an error or warning. By default, mcomp issues a warning.

The following example illustrates a coding style that did not generate a warning prior
to MicroStation 95:

cmdName myCommand()
{

...
/* no return statement */

}

Starting with MicroStation 95, mcomp would generate a warning for this function.
Since the function declaration does not specify a return type, int is implied. The
compiler issues a warning because this is an int function that does not contain a return
statement. To eliminate the warning without using the pragma, change the declaration
to:

cmdName void myCommand()
{

...
/* no return statement */

}

To force mcomp to generate an error every time it detects a function missing a return
statement, add the following to a standard header file:

#pragma noReturnStatement error

Detailed Description, undeclaredFunction

The pragma undeclaredFunction controls what happens if mcomp detects a function
call using an undeclared identifier. This is useful because calling undeclared functions
limits the compilers effectiveness in detecting some errors. If a function is not declared,
mcomp does not know anything about the parameters and assumes the return type to
be int. The default value of undeclaredFunction is ignore. As with the other pragmas
in this section, it can ignore it or issue an error or warning.

pragma: options
Syntax

#pragma options ...
MicroStation MDL Programmer’s Reference Guide 5-7

A Comparison of MDL and C
Summary
Summary

Added to MDL only to eliminate warnings that occur on the options pragmas that are
in the MDL header files.

Relevant Compilers

mcomp, rcomp, rsctype

Detailed Description

The options pragma is in MDL header files only because it is required for the native C
compiler on the RS6000. They are not required for MDL. Since the MDL preprocessor
issues a warning whenever it encounters pragma that it does not recognize, these
pragmas caused a lot of warnings. Now the preprocessor recognizes these macros and
does nothing.

pragma: packedLittleEndianData
Syntax

#pragma packedLittleEndianData

Summary

Switch the compiler into a mode where all compiled data is generated in packed little
endian format.

Relevant Compilers

rsctype

Detailed Description

This pragma is used by the rsctype compiler in the context of creating data definitions
to be used by the binary portability (mdlCnv_bufferToFileFormat or
mdlCnv_bufferFromFileFormat) or element linkage (mdlLinkage_*) MDL functions.

Example

Here is an example of the packedLittleEndianData pragma as used in a .mt file. The
pragma is used to switch the compiler into packed little endian data mode. A data
definition will be generated with an identifier of MYLINKAGE_DATADEF_ID that describes
the format of the data within mylinkagestruct as it would be found in a user attribute
data linkage on a .dgn file element.
5-8 MicroStation MDL Programmer’s Reference Guide

A Comparison of MDL and C
pragma: pointerToNative
For more information on this subject, see “Binary Portability” on page 6-27.

#pragma packedLittleEndianData
#include <myfile.h> /* defines “mylinkagestruct” */
createDataDef(mylinkagestruct, MYLINKAGE_DATADEF_ID);

pragma: pointerToNative
Syntax

#pragma pointerToNative <typedef_name> [,] ...

Summary

Used to specify that a function pointer points to a function in a DLM, not a function in
an MDL program.

Relevant Compilers

mcomp

Detailed Description

When the MDL compiler compiles code that uses a function pointer, it must know
whether that pointer points to an MDL function or a nativeCode function. By default,
function pointers in MDL refer to MDL functions. A typedef can be designated as a
pointer to a native-code function through the use of the pointerToNative pragma.

The pointerToNative pragma accepts a comma-separated list of typedef names. Each
typedef must have type pointer-to-function.

Example

To create a function pointer that points to native-code functions, use:

typedef int (*FuncP)();
#pragma pointerToNative FuncP

pragma: resourceID
Syntax: #pragma resourceID ‘MyId’
MicroStation MDL Programmer’s Reference Guide 5-9

A Comparison of MDL and C
Summary
Summary

Used to assign a resource ID to an MDL program. This pragma is useful only when an
application file contains more than one program. If the application file contains only
one program, specifying resourceID is not useful.

Relevant Compilers

mcomp

Detailed Description

The MDL linker always assigns a resource ID to each MDL program it creates. By
default, it assigns the resource ID ‘main’. It is not possible to store two programs with
the same resource ID in the same resource file. Each program must have a unique
resource ID. Therefore, if two MDL programs are to be stored in the same MDL file, it
is necessary to assign something other than the default resource ID to one of the
programs. To do so, use the resourceID pragma. If the application contains only one
program, specifying the resource ID is not useful.

The resourceID pragma requires a constant integer expression as the resource ID.
Typically, the integer expression is given as a four character integer expression.

pragma: ident
Summary

Used to brand a resource file with an identifying string.

Relevant Compilers

rcomp

Detailed Description

The first 64 bytes of every binary resource file is a text string used to describe the file.
By default, this string will be filled in by the resource compiler with a generic
description like:

“MicroStation Resource File - Version 5.0”

An application can use the Ident pragma to generate it’s own identifying string for a
.rsc file.
5-10 MicroStation MDL Programmer’s Reference Guide

A Comparison of MDL and C
Example
Example

If a .r file contained:

#pragma Ident “My resource file version zero”

The resulting binary resource file will have that string contained within it, starting at file
offset zero.

pragma: suppressREQCmds
Syntax

#pragma suppressREQCmds

Summary

Used to eliminate unnecessary CMD_ macros from generated command table header
files.

Relevant Compilers

rcomp

Detailed Description

In some cases, a third party application may wish to expand on a class of commands
that exist in MicroStation. For example, MicroStation has a PLACE LINE command, and
a third party developer may wish to expand on PLACE to also recognize a PLACE
WIDGET subcommand. The suppressREQCmds pragma suppresses the generation of
CMD_ macros in the generated command header files which would otherwise conflict
with definitions in the delivered header file cmdlist.h. This is only necessary to prevent
subsequent warnings that get generated in .mc files that include both cmdlist.h and
local header files with redundant base commands. See Example below for details.

Example

In the example below, the third party application creates a command table for a
PLACE WIDGET subcommand off the PLACE base command:

#include “rscdefs.h”
#include “cmdclass.h”

#pragma suppressREQCmds
MicroStation MDL Programmer’s Reference Guide 5-11

A Comparison of MDL and C
pragma: translate
#define CT_NONE 0
#define CT_MAIN 1
#define CT_PLACE 2
#define CT_WIDGET 3

Table CT_MAIN=
{

{1, CT_PLACE, 0, REQ, “PLACE”},
};

Table CT_PLACE=
{

{1, CT_WIDGET, 0, 0, “WIDGET”},
};

Table CT_WIDGET=
{

{1, CT_NONE, 0, DEF, “OVER”},
{2, CT_NONE, 0, 0, “UNDER”},

};

The header file resulting from the compilation (with -h option) looks like this:

#define CMD_PLACE_WIDGET 0x01010000
#define CMD_PLACE_WIDGET_OVER 0x01010100
#define CMD_PLACE_WIDGET_UNDER 0x01010200

Without the suppressREQCmds pragma, an additional entry would have been generated:

#define CMD_PLACE 0x01000000

The last macro would conflict with the CMD_PLACE macro in the delivered header file
cmdlist.h if both header files were included in the same .mc file.

pragma: translate
Syntax

#pragma translate “filename.ext”

Summary

Used to specify a translation table for compile-time character conversions of characters
in string constants. Usually specified at the top of a resource source, .r, file.

Relevant Compilers

mcomp, rcomp
5-12 MicroStation MDL Programmer’s Reference Guide

A Comparison of MDL and C
Detailed Description
Detailed Description

This pragma is used in conjunction with the -t option of the rcomp and mcomp
compilers. The -t option is used to specify the directory from where translation tables,
(filename.ext) should be loaded. Every time the compiler encounters a string constant,
each character is passed through the translation table along it’s way to the compiled
output file.

This pragma is most often used within the context of converting .r files encoded in one
of several DOS Code Pages to the (International Standards Organization) ISO 8859-1
character encoding (sometimes referred to as the Windows ANSI Character Set).

Several character translation tables are delivered with the DOS version of MicroStation.

$MS/chartran/eng1437.rsc Code Page 437 (English)
$MS/chartran/mult850.rsc Code Page 850 (Multilingual)
$MS/chartran/port860.rsc Code Page 860 (Portuguese)
$MS/chartran/cnfr863.rsc Code Page 863 (Canadian-French)

$MS/chartran/nord865.rsc Code Page 865 (Nordic)

Example

#pragma translate “eng1437.rsc”

pragma: Version
Syntax

#pragma Version 5:5:0

Summary

Used to control the version number that displays in the Version field of the MDL
application.

Relevant Compilers

mcomp

Detailed Description

The Version pragma specifies a version number to be associated with the MDL
program. The version number must be specified as a series of constant integer
expressions separated by colons. Up to three levels can be specified. For each
unspecified level, 0 is assumed. If the third number is a printable ASCII character, it is
MicroStation MDL Programmer’s Reference Guide 5-13

A Comparison of MDL and C
Structure Layout
displayed in the Version field of the MDL application Detail dialog box as that ASCII
character. For example, specify:

#pragma Version 5:0:’e’

in the pragma to get 5.0.e in the Version field. If more than one object file in a
program contains a version number specification, all version numbers must be the
same.

Typically, programs do not use the Version pragma and instead use the version
number generated by the MDL linker.

Structure Layout
Structure handling depends on the implementation for C compilers. On any platform,
the MDL compiler mimics the C compiler used for compiling MicroStation. The MDL
compiler and the host machine’s compiler use the same rules for alignment and
padding within a structure if all bit field groups start on a word boundary and are
padded to a word boundary. For example, if a few contiguous bit fields are defined
and the combined length of the bit fields is 22 bits, another 10-bit field should be
added to supply the padding needed to pad the group of fields to the size of a long.

Because the MDL compiler mimics the host machine’s compiler, programs compiled
with the MDL compiler and programs compiled with the host machine’s compiler can
access data with the same structure definitions.

Bitfield Handling
The MDL compiler should allocate bit fields in structures exactly the same as the native
C compiler used to compile MicroStation.

A zero-length bitfield tells the compiler that you want to advance to the next alignment
boundary.

Special steps are necessary if an MDL application will be using a structure definition to
dereference data that is to be platform independent, such as is the case when data is
loaded from a resource file and dereferenced with a pointer. In this case, bitfields
MUST conform to the following rules:

1. group bitfields together

2. start the groups on word boundaries

3. define all 32 bits of the word, even if that requires defining filler fields
5-14 MicroStation MDL Programmer’s Reference Guide

A Comparison of MDL and C
Bitfield Handling
4. define each 32 bit grouping twice, once in reverse order, depending
on the existence of the macro BITFIELDS_REVERSED. For example,

#include <basedefs.h>
struct teststruct
{

double dblMember;

#if !defined (BITFIELDS_REVERSED)
unsigned int bf1:1;
unsigned int bf2:2;
unsigned int reserved:30;

#else
unsigned int reserved:30;
unsigned int bf2:1;
unsigned int bf1:1;

#endif

long lngMember;
};

If the platform independence is not a concern, but data is to be shared between an
MDL application and an external program, the first three steps are still recommended.
MicroStation MDL Programmer’s Reference Guide 5-15

5-16 MicroStation MDL Programmer’s Reference Guide

6 MicroStation Resources
This chapter deals with how to manage, use, create and modify
resources with the MDL application environment. It also introduces
the Binary Portability Library functionality to allow for the
management of portable information in resources and other structures.
MicroStation Resources
The following sections comprise this chapter:

• An Overview of Resources

• Creating Resources

• Modifying Resources

• Managing Resources

• The MicroStation Resource Manager

• A Resource Programming Example

• Binary Portability

• Resource Source Generator

• Resource Utilities

An Overview of Resources
In its simplest sense, a resource is a variable stored in a file for later use. A resource
has three levels of identification:

• File

• resourceclass (or type)

• ID. The ID makes a resource unique within a given resourceclass
and file.

Resources are the entities that MicroStation uses to define the way things are physically
presented on the screen, represent static information and provide functional
MicroStation MDL Programmer’s Reference Guide 6-1

MicroStation Resources
Benefits from using resources
extensions. MicroStation itself, the core product, is a large, natively compiled and
linked program. It contains virtually no static text definitions, no dialog box or item
definitions, no information on how the interface is to look visually, and only some
additional code beyond the basic CAD functionality provided in versions of
MicroStation prior to release 4.0.

All MicroStation versions since 4.0 (3.5 on the Macintosh) store GUI related information
in resource files. During execution, MicroStation refers to the resource files for
information on user preferences, how and where to display dialog items, and many
other aspects of its behavior. Resource files provide an efficient way to extend
MicroStation’s functionality. The following files are compiled into binary resources and
referenced by MicroStation via the MicroStation resource manager:

• Text strings for all error, status, prompt, dialog and command text.

• Command tables.

• User preferences and other static GUI-based control structures.

• The complete GUI visual display base (dialog boxes, settings boxes).

• All of the extensions to MicroStation in the form of MDL applications.

Resource-based subsystems in MicroStation include:

• Command parsing.

• Message lists.

• Dialog box manager.

Benefits from using resources
Several benefits can be gained from using resources:

• Convenience
Resource manager routines allow a programmer to quickly save or
restore data to or from a resource file without having to worry about
the details of file formats or file access methods.

• Isolation of data
By separating data from program code, items like error messages and
prompts can be changed without having to recompile program source
code.

• Minimize memory requirements
Using resources means data is loaded into memory only when
needed. Also, two applications can load the same resource from the
same file, and when this occurs, only one copy of the resource is
maintained in memory.
6-2 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
Application Resources
• MicroStation has resource-based subsystems
MicroStation has several subsystems that use pre-defined resource
types. Defining items such as command syntax and messages is more
standard and less time consuming.

Application Resources
Like MicroStation, MDL applications use resources to define text strings command
tables.-- In addition to these standard resources, applications can define their own
application-specific resources for whatever purposes the application needs.

General Resource Definition Format
The syntax for resource source .r files is modeled after the syntax for data initialization
in C. Specifying resource types and initializing them with data is the same as specifying
typedef and declaring and initializing variables in C. The differences from standard C
are listed below, and examples of some concepts are in the following “Examples”
section.

• The resource language is used only for declaring and initializing data.
It does not contain any executable statements.

• An MDL-specific statement, resourceclass, is used to assign a unique
identifier to each typedef statement. This unsigned long identifier is
referred to as a type ID, and is associated with each resource declared
of that type. Conversely, each resource is considered to be a member
of a resource class.

This information is stored in the resource file, and MicroStation’s resource manager
uses it when locating resources. The syntax for a resourceclass statement is as
follows:

resourceclass <type-name> <resource class>

<type-name> must have been previously declared in a typedef statement.

<resource class> is a constant integer expression. The expression is evaluated at
compile time and treated as an unsigned long.

• A resource declaration is similar to an initialized variable declaration
in standard C. In C, a variable name is used to identify a memory
address at execution time. A resource is identified with a 32-bit
unsigned integer value and the file in which it is stored.

• The resource compiler lets an application define structures with
variable-sized members. These structures are called “structures of
undefined length,” or variable sized arrays; arrays without bounds.
MicroStation MDL Programmer’s Reference Guide 6-3

MicroStation Resources
Resource Examples
When a variable sized array is initialized, rcomp generates a hidden
long value in front of the array data that defines the number of
elements in the array. This is why resource structure definitions in
header files contain the #if defined (resource) preprocessor
directives to allow the proper structure definition to be included in the
resource or MDL source file.

• Structures can contain immediate members - members whose
numeric value is hard-coded in the structure and does not need to be
specified in resource declarations. These constants are sometimes
referred to as “fillers.”

• Pointers are not supported.

• String constants in declaration lists are placed directly in the structure
as an array of characters. The declared string is truncated or zero-filled
to the size of the field as defined in the corresponding typedef. The
number of characters placed in the array is controlled by the typedef
corresponding to that variable. For example, suppose the type is
defined as follows:

typedef struct
{

char str[6];
} SimpleString;
resourceclass SimpleString SMPL_STR_TYPE_ID;

Also, suppose the declaration of the resource was as follows:

SimpleString MY_RES_ID = {"abcdefg"};

Thus, the string would get truncated to fit in six characters (including the trailing NULL
byte) as abcde\0.

Resource Examples
The following sub-sections demonstrate the aforementioned differences between
resource and C syntax.
6-4 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
Resource classes and resource IDs
Resource classes and resource IDs

Here is an example of how resource classes and resource IDs are used:

#define TWO_INT_TYPE 0x5
#define MY_RESOURCE 0x200
#define YOUR_RESOURCE 0x300

typedef struct
{

int a;
int b;

} TwoIntStruct;

resourceclass TwoIntStruct TWO_INT_TYPE;
TwoIntStruct MY_RESOURCE = {3, 4},
YOUR_RESOURCE = {6, 5};

An MDL application can access the structure at runtime by calling one of the resource
management built-in functions specifying resourceclass TWO_INT_TYPE and
resourceID MY_RESOURCE or YOUR_RESOURCE.

Variable sized arrays
The testStruct structure, shown below, has an undefined length because of its c
structure member. This example shows how each instance of testStruct will look, but
the number of members in the c array will vary with each resource of type testStruct
declared in the file.

Source file

typedef struct testStruct /* typedef structure containing */
{ /* an array of undefined size */

char a[3];
char b[3];
char c[];

} testStruct;
resourceclass testStruct 'abcs'; /* Assign 0x61626373 ID to */

/* the "testStruct" structure */
testStruct 1 = {"aaa", "bbb", "ccc"}; /* Declare an instance of a */

/* resource with RSCID of
1 */
MicroStation MDL Programmer’s Reference Guide 6-5

MicroStation Resources
Dump of compiled resource
Dump of compiled resource

resourceclass = 0x61626373 ('abcs') - 1 resources
resourceId=(1, 0x00000001) Size/Pos=(14/340)
000000 61 61 61 62 62 62 04 00 00 00 63 63 63 00 | aaabbb.ccc.
 \ / |

length NULL terminator

The [] signifies a variable-length array. When a resource of type TestStruct is
declared later in the file, a hidden long value is inserted after member b and before
member c indicating the number of iterations of member c in TestStruct.

Immediate members / Fillers

The following example illustrates the use of fillers:

typedef struct fourIntStruct
{

int 0[3]; /* 3 zero-filled ints */
int b;

} FourInts;
resourceclass FourInts FOUR_INTS_TYPE_ID;

A subsequent resource declaration would need only to provide an initializer for the b
member since the first structure member (array of three ints) is already initialized:

FourInts MY_RESOURCE_ID = {1};/* 0,0,0,1 */

Creating Resources
There are two ways that resources can be created.

➤ To create resources

1. The MDL resource compiler rcomp generates resource .rsc files from
resource source .r files. Then the MDL linker mlink links one or more
object .mo files into a program .mp file. Finally, rlib merges the .mp
file with .rsc files to create an executable .ma file.

2. An MDL application can use resource manager functions to create a
resource.

Resources generated with the resource compiler are generally static. Thus, they
generally do not change and are just read by MDL applications. The source language
for resource source files is an extension of C. It allows the following to be described:

• Variable-length arrays and structures

• Structures with constant fields
6-6 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
Error message translation: an example of static resource use
Resources generated during MDL application execution are usually more dynamic.
They are created, read, written and sometimes deleted. Examples of static and dynamic
resource descriptions follow.

Error message translation: an example of static resource use
An example of resource use is an application with error messages that must be
translated into a foreign language. If resources are not used, when error messages are
hard-coded into the application source code, they are difficult to locate because they
can be scattered over many source code modules. The task becomes particularly
difficult if the human translator is not the application programmer (usually the case).
But that would only be part of the problem. Once the error messages are located and
changed, all affected source modules need to be recompiled, a time-consuming
process for large applications. If two or more application programs are involved in the
system, some error messages can be duplicated, thus increasing the amount of work.

When error messages are extracted from the application source code and placed into a
separate source file, they are centralized and therefore easily located. Once translated,
they can be compiled into resource file format with the MicroStation Resource
Compiler. The compilation process will be much faster than it will when resources are
not used, since fewer files and no C instruction code compilation is involved. Error
messages such as “Sorry, that feature is not yet available” can be common to
and shared by several applications.

This last example shows how static resources can be used. (A static resource is
defined as an ASCII source file that is compiled into resource file format). However,
some applications need to collect information and store it in a file during program
execution. These resources are more dynamic.

User preferences: An example of dynamic resource use
An example of collecting and saving resource information dynamically (during
program execution) is found in MicroStation’s Preferences dialog box. In this dialog
box, you can alter options such as the Undo Buffer size and the Drawing Compatibility
mode. This information is then saved in a resource file to be reused during future
MicroStation sessions. In this case, MicroStation uses the resource manager functions to
create the file where the resource will be stored, to save the resources in the file, and
to reload the resources during subsequent sessions.

In general, the resource manager acts as a database interface for storing and retrieving
internal program variables (resources) that must be reused across multiple executions
of an application, shielding the application from the actual file storage methods used.
An application needs only to set up identifiers for its resources.
MicroStation MDL Programmer’s Reference Guide 6-7

MicroStation Resources
Predefined resources in MicroStation: Message list and table
Predefined resources in MicroStation: Message list and table
The Message List and Table resource classes were predefined for the convenience of
applications. These resource classes are defined in the system header file rscdefs.h.
MessageLists are described below. For a description of command tables and the
predefined resource class Table, see “Compiling an Application Command Table” on
page 7-11.

A MessageList contains messages used by the application. Each message in the list has
a corresponding message number. These message numbers must be unique and
appear in ascending order in the list. The MessageList’s resource identifier (referred to
as resourceID) combined with a message number uniquely identifies a given message
in the list. A sample MessageList follows:

MessageList TEST_LIST_ID=
{

{
{4, "Please enter your password."},
{21, "That function is not available."},
{9999, "Press any key to continue."};

}
}

An application can obtain a message in a MessageList directly using the
mdlResource_loadFromStringList function or can instruct one of several MDL built-in
functions to use its MessageLists. Specifying MessageLists to MDL built-in functions
enables MicroStation to display an appropriate command name and command prompt
when application commands are initiated, undone and redone. These built-in functions
and their relationships to MessageLists are described in the following table:

Function Used to

mdlState_registerStringIds register an application’s Command
Prompt MessageList and Command Name
MessageList for other built-in functions to
use.

mdlState_startPrimitive
mdlState_startFenceCommand
mdlState_startModifyCommand
mdlState_startViewCommand

accept prompt and command name
message numbers as parameters. The
message numbers are contained in the
application’s registered Prompt and
Command Name MessageLists,
respectively.

mdlOutput_rscPrintf
mdlOutput_rscvPrintf

accept a MessageList ID and a message
number to display an application
message using printf and vprintf.
6-8 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
Modifying Resources
Modifying Resources
Although in many cases updating resources can be very simple and straightforward, it
can also be fraught with many pitfalls for the unwary programmer. Aside from simply
creating or modifying a resource and writing that information to a resource file, an
application has to be able to reliably traverse any resource in order to access and
modify the information in the resource. This section talks about traversal issues as well
as creating and modifying resources and resource files.

The following functions are used to access resources. See “Resource Management
Functions” in the MicroStation MDL Function Reference Manual for more information.

These functions will also be discussed later in this section.

Finding your way around a resource
Although pointer variables can’t be used in resources, variable array structures can
provide the same functionality in a different form. To make this clearer, consider what
a C programmer does when a structure is used to keep track of data needed by a
program. If the program requires a buffer of unknown size, a pointer variable is stored
in the structure and when the memory is allocated for this variable, the address is
stored in the pointer field of the structure. But since resources are statically sized
storage areas, it must have a way of providing for this circumstance in structure
definitions.

A variable sized array is assigned a length at compile time by rcomp. As rcomp
compiles the resource definition, it counts the number of elements in the array. When
the resource is fully compiled and all the elements have been counted, rcomp writes
out the element count followed by the elements to the resource on disk. Later, at
execution time, the application will load the resource using the mdlResource_load
function call. Since the application knows that it is dealing with a variable sized array,
it will refer to the unsigned long element count in front of the array to determine the
array size.

This means that the actual structure of resources in memory containing variable sized
arrays differs from what is defined in a header file describing that resource structure.

Function Used to

mdlResource_openFile open a resource file.

mdlResource_add add a new resource to an open file.

mdlResource_load load a resource.

mdlResource_write update a resource.

mdlResource_free free a resource.

mdlResource_closeFile close a resource file.
MicroStation MDL Programmer’s Reference Guide 6-9

MicroStation Resources
Finding your way around a resource
This is why the structure definitions for the application and the resource manager are
different - so that each knows the structure up to the point at which it is statically
defined.

A simple example of this is shown below. The structure definition of the resource
shows a number of fields followed by an array of additional structures.

typedef struct mysubstruct
{

long subLong1;
char subChar1;

} MySubStruct;

typedef struct myresource
{

int int1;
int int2;
char char1[4];
long long1;

#if defined (resource)
MySubStruct subStructs[];

#else
long subStructLen;
MySubStruct subStructs[1];

#endif

} MyResource;

Up to the subStructs field of the resource, the handling of this resource in memory is
straightforward; the resource and MDL structures are identical. The problems occur
when trying to reference the information in the subStructs field. Here is where most
programmers make mistakes - different platforms and compilers have differing
alignment restrictions for structures and for basic types.

The first attempt at traversing this structure will typically look something like the
following code:

int i;
MyResource *rscP;
...

for (i=0; i < rscP->subStructLen; i++)
myFunc(rscP->subStructs[i].subChar1, rscP->subStructs[i].subLong1);

...

The problem with the above code sample is that it is not portable. There are no
guarantees that the compiler will generate resource structures that meet requirements
6-10 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
The Resource Manager Functions
for long and general structure alignment restrictions. The portable way to traverse this
array is to use the mdlDialog_fixResourceAddress function:

void *mdlDialog_fixResourceAddress/* <= pointer to loc. of member */
(
byte *resP, /* => base of the structure next pointer is in */
byte *memberP, /* => addr of the member needing alignment fixing */
int sizeMember /* => alignment (usually sizeof(long)) */
);

The function is called with the address of the known point in the structure (typically
the base or current traverse point) as the first parameter, the best guess at the address
the application is trying to get to as the second parameter, and sizeof (long) as the
third parameter. Using this function, we can rewrite the above code sample.

int i;
MyResource *rscP;
MySubStruct *subP;
...

/* Address first array entry */
subP = &rscP->subStructs[0];
for (i = 0; i < rscP->subStructLen; i++)
{

myFunc(subP->subChar1, subP->subLong1);
/* Get address of next array entry */
subP = mdlDialog_fixResourceAddress((byte *)subP,

(byte *)subP + sizeof(MySubStruct), sizeof(long));
}
...

The above example was very simple compared to the way applications must traverse
complicated resources such as Pulldown Menu Items or a Dialog Box Resource.
Knowing what to look for simplifies the processing of resources immensely.

Once you know your way around a resource, it is straightforward creating and
modifying resources.

The Resource Manager Functions
The Resource Manager provides many functions for updating resource files. These
functions can be divided into three main areas:

• Deleting existing resources.

• Creating new resources.

• Updating existing resources.
MicroStation MDL Programmer’s Reference Guide 6-11

MicroStation Resources
The Resource Manager Functions
To delete an existing resource from a resource file, an application simply calls the
mdlResource_delete function, and indicates the resource file and resource to delete. If
no applications have the resource loaded, the resource is deleted from the file,
otherwise the request is rejected and the application must try again later.

There are two ways to add new resources to a resource file. One is to allow the
Resource Manager to add the resource using the mdlResource_add function. The other
is for the application to add the resource to the file itself using the
mdlResource_directAdd function. Both of these functions will reject any attempt to
add a resource that matches an existing resource in the file (i.e., the resource ID and
class match that of a resource already in the resource file). Also, these are the only
Resource Manager functions that deal explicitly with resources that do not require the
resource pointer (memory area) to be allocated by the Resource Manager.

The mdlResource_add function accepts a pointer to the resource to be added, the
resource class, resource ID, resource size and resource alias as input. The
mdlResource_directAdd function does not require the resource and resource size as
input, but does require a pointer to a RscDirectAccess structure for returning
information about where to add the resource to the file. In addition, after an
application has finished writing a resource to a file in conjunction with the
mdlResource_directAdd function, it must call mdlResource_directAddComplete to
notify the Resource Manager that the resource has been added to the file. Examples of
the use of these functions are shown below:

RscDirectAccess direct;
...

/* Add Text resource to the resource file */
mdlResource_add(rscHandle, RTYPE_Text, rscId, textRscP, rscSize,
NULL);

/* Now use regular stream file I/O to write our own user pref rsc */
mdlResource_directAdd(rscHandle, RTYPE_MyPrefs, rscId1, NULL, &direct);
fseek(direct.fileP, direct.filePos, SEEK_SET);
fwrite(prefsRscP, prefsSize, 1, direct.fileP);
fflush(direct.fileP);
mdlResource_directAddComplete();

It is important to note that the information in the RscDirectAccess structure remains
accurate only up to the point that control is given back to MicroStation. This is
especially true for the file pointer field. Any time the application needs to perform
direct file I/O on a resource file, it must use the proper mdlResource_direct… function
to load the structure with the most up-to-date and correct information.

Updating resources is done using two functions. mdlResource_write performs the
actual writing of an existing resource back to the resource file it came from. The
resource pointer passed as input to this function must be the same as one originally
received from the Resource Manager via mdlResource_load. This means that the size
of the resource can not have changed without notifying the Resource Manager and an
6-12 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
Managing Resources
application cannot copy resources internally and pass the copies to the Resource
Manager for processing. To resize a resource, the application needs to use the
mdlResource_resize function. This function causes the Resource Manager to either
allocate a new memory area to contain the resource if it is being enlarged or truncate
the original buffer to reflect a smaller resource. It is the responsibility of the application
to ensure that the data is properly entered into the new resource area returned before
writing the resource and in the case of down-sizing a resource, saving any resource
information which could be truncated.

✍ Neither of these functions will succeed if another application has loaded
the resource being modified.

int localPrefsSize;
MyUserPrefs localPrefs;
MyUserPrefs *currentPrefsP; /* loaded from resource file */

...

/* Truncate preferences by removing the array at end */
localPrefsSize=(byte *)¤tPrefsP->endArrayLen -(byte
*)currentPrefsP;
memcpy(&localPrefs, currentPrefsP, localPrefsSize);
localPrefs.endArrayLen = 0;
localPrefsSize += sizeof(long);

/* Resize preferences rsrc and if successful, write rsrc back out */
currentPrefsP = mdlResource_resize(currentPrefsP, localPrefsSize);
if (currentPrefsP)
{

memcpy(currentPrefsP, &localPrefs, localPrefsSize);
mdlResource_write(currentPrefsP);

}

✍ In older versions of MicroStation, there is a bug which causes a resized
resource not to be updated in memory after being written back to the
resource file until the resource file has been closed and reopened. This
bug is exhibited if the resized resource was the only one of that type
(class) in the resource file.

Managing Resources
MicroStation provides a complete set of functions which can be used to manage and
operate on resources. Resources can be directly accessed using the Resource Manager
or accessed indirectly using the various interface functions provided by the Dialog
Manager, Command Parser and Message Subsystem. These interfaces are discussed
below.
MicroStation MDL Programmer’s Reference Guide 6-13

MicroStation Resources
Message Subsystem
Message Subsystem
The message subsystem provides mechanisms for retrieving text strings from your
resources and displaying that text in the MicroStation Command Window or dumping
the text to either a file or a buffer. These are the mdlOutput_rsc… functions which
accept a resource file handle, resource ID, and string (message) list index value of the
string to be displayed as input. These functions then retrieve the string from the
appropriate resource and resource file and display it in the specified field of the
Command Window. No other functions are provided for retrieving and displaying
strings from a message list. Only by using the Resource and Dialog Managers directly
can you perform any other string/display processing to MicroStation windows.

Command Parser
In addition to performing the actual translation of key-ins into commands, the
Command Parser provides various functions for loading and handling the command
table resources which provide the foundation of MicroStation.

Many people still have a hard time thinking of the command tables of MicroStation as
being simple tables of a parse tree which are statically loaded into MicroStation. But,
that is exactly what they are. If the command tables were actually dynamic or compiled
directly into the application (including MicroStation), then the Command Parser would
be unable to offer the flexibility and extensibility it currently provides.

Command tables are defined in resource files as a series of parse trees which are
compiled by the resource compiler. A sample command table is provided below:

#include <rscdefs.h>
#include <cmdclass.h>
/*---+
| |
| Local Defines |
| |
+---*/
#define CT_NONE 0
#define CT_MAIN 1
#define CT_LOAD 2
#define CT_OPEN 3

/* Application Command Tables */
Table CT_MAIN=
{

{1, CT_LOAD, INPUT, HID, "LOAD"},
};

Table CT_PALLOAD=
{

{1, CT_OPEN, INPUT, NONE, "OPEN"},
6-14 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
Command Parser
{2, CT_NONE, INPUT, NONE, "ADDMENU"},
{3, CT_NONE, INPUT, CMDSTR(1), "KEYIN"},

};

Table CT_OPEN=
{

{1, CT_NONE, INPUT, NONE, "PALETTE"},
{2, CT_NONE, INPUT, NONE, "AUTO"},

};

When the command table resource is compiled and a header file generated which
contains the command numbers for each command, the application can hook functions
to handle each command and the command table resource can be loaded into
MicroStation so that the user can access those commands when the application is
loaded.

The following sections provide an overview of the general command table resource
management functions available.

mdlParse_loadCommandTable

Descr. This function will load the application’s command table into memory and “merges” it
into MicroStation’s parse tree for processing commands keyed-in from the Command
Window. This function starts loading command table resources from the specified
resource file starting at resource ID 1 and continues loading all tables which are part of
the parse tree. This function should be called once from the main entry point of an
application. This function returns a pointer to the parse table descriptor created after
loading the command table successfully. The pointer can be used to later unload the
parse table if needed.

mdlParse_unloadTable

Descr. This function unloads the specified command table from MicroStation and frees the
command table resource from memory. Most applications do not need to worry about
this call since this operation is performed by MicroStation when an application is
unloaded from memory.

mdlParse_loadKeywordTable

Descr. This function is useful for loading an alternate command table resource into memory
for use only by the application through using the mdlParse_keyWord function. This
MicroStation MDL Programmer’s Reference Guide 6-15

MicroStation Resources
Dialog Box Manager
function does not provide a table descriptor upon return, and therefore does not allow
the unloading of the table from memory until the application exits (i.e., is unloaded).

Dialog Box Manager
The Dialog Box Manager is by far the most common resource interface for the
applications programmer. This interface provides the only way for providing a
MicroStation compatible user interface to an application or to display dialog boxes on
the screen. This interface performs all resource file management for the user as far as
dialog boxes and items are concerned. When a single dialog box is opened using
mdlDialog_open (or one of the other mdlDialog_open_… functions), the Dialog
Manager goes out to the specified resource file, loads the dialog box resource
indicated, and then loads each associated dialog item resource into memory as well. It
also manages the display of the resources on the screen and the dynamic modification
of the resources in memory via the mdlDialog_… functions provided for this purpose.

Functions are provided to allow the label, location, size and attributes of an in-memory
resource to be changed dynamically for an occurrence of the dialog box or item. In
some cases, this modification is not to the actual copy of the resource itself, but instead
to a decoded internal representation of that resource.

The Dialog Manager even controls the freeing of all loaded resources intrinsically as
part of the management of the GUI display environment.

The MicroStation Resource Manager
The MicroStation Resource Manager provides the applications programmer with a
number of functions that allow the user to read (load), modify, write, create and delete
resources to and from resource files. These are the low level functions used by the
other subsystems mentioned above and are the only safe direct interface to resources.
The following sections discuss various aspects of resource file and resource item
management.

Resource File Management
In order to reference any resources, an application must have access to the resource
file containing those resources. An application gains access to resources through three
methods:

1. Opening resource files using the mdlResource_openFile function.

2. By “importing” the resource handle from another task.

3. Inheriting them from parent tasks.
6-16 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
Loading and querying resources
An application can open as many resource files as it needs for its processing. It can
also open resource files currently opened by another task within MicroStation.
Although an application does not necessarily need to keep track of the resource file
handles after opening the files, the handle is required for applications to load a
resource from a specific file and to close or add resources to a file. In most cases, an
application will simply call mdlResource_openFile upon entry to main function and
mdlResource_closeFile prior to exiting the application as shown below:

#include <mdl.h>
#include <rscdefs.h>
main(int argc, char *argv[])
{

RscFileHandle rscHandle;

...

/* Open the application resource file for READ access. If error
issue an error message and exit */

if (mdlResource_openFile(&rscHandle, NULL, FALSE))
{

mdlOutput_errorU("Unable to open resource file");
mdlSystem_exit(-1, 1);

}

...

/* Close the resource file before we exit */
mdlResource_closeFile(rscHandle);
mdlSystem_exit(0, 1);

}

For most applications, no additional mdlResource_… function calls are needed to
perform any resource references, as this is handled by the various subsystem
managers. In cases where the application needs to update resource information in a
file, it must open the file for Read/Write access by passing RSC_READWRITE as the last
parameter to mdlResource_openFile.

The mdlResource_createFile function allows the user to create new resource files.
This function is useful to applications which need to maintain application specific user
preferences or other information in a separate file. Remember that this function does
not open the file; mdlResource_openFile must be called after this function to place
resources into the file.

Loading and querying resources
When an application wants to load a resource from a resource file into memory for
use, it uses one of the Resource Manager load functions. These functions provide
differing levels of access to the resource information in a resource file. On occasion, it
may be necessary to retrieve information about resources and resource files. The
MicroStation MDL Programmer’s Reference Guide 6-17

MicroStation Resources
Loading Resources
mdlResource_query… functions provide this capability. An additional query function is
also provided to return information about resources already loaded by the application
program.

Loading Resources

Typically, an application doesn’t care where a resource is found (i.e., which file it came
from) since all of the resources specific to the application are typically placed in their
own resource files and any other resources it uses it expects to inherit from its parents.
This being the case, an application will typically use the mdlResource_load and
mdlResource_loadFromStringList functions specifying NULL as the resource file
handle. This has the effect of causing the MicroStation Resource Manager to start
looking for the specified resource in the application's resource files and then resource
files in the order of most recently opened first until it locates the resource requested.
Once the resource is found, it is loaded into memory and the address of the resource is
returned to the application. If the resource is not found, NULL is returned to the
application. This is shown graphically in the diagram below.

It is important to remember that resources loaded into memory with the
mdlResource_load function must be freed using mdlResource_free when the
application is done with the resource. If the requested resource was not previously
loaded by the Resource Manager, mdlResource_load will load the requested resource
into memory allocated by the Resource Manager as it is read from the file and return
the address of the resource to the application program. This action is performed only
once. If the resource was already loaded, the Resource Manager will simply return the
address of the loaded resource to the application.

The mdlResource_loadFromStringList function is a specialized version of the
mdlResource_load function which allows the application to extract a single string out

mdlappA2.rsc

mdlappA.ma

mdlappA1.rsc

ustation.rsc

MicroStation's
open resource files (ID's < 0)

MDL app A's
open resource files

(ID's > 0)

MDL app B's
open resource files

(ID's > 0)

mdlappB.ma

mdlappB1.rsc

mdlappB2.rsc

mdlResource_load (NULL, resourceType, resourceID);
6-18 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
Querying Resource Information
of a message list resource without loading the message list resource and extracting the
string itself. Since only the string from the message list is returned, the application does
not need to free the resource from memory.

The other function which can be used to load resources into memory is the
mdlResource_directLoad function. This function does not perform the resource load
operation, but instead gives the application program information about the resource so
that the application can perform its own resource file loading. The first three
parameters of this function are the same as those for the mdlResource_load function. A
fourth parameter is passed to this function which is a pointer to a structure into which
the function returns the necessary information for the application to read the resource.
This structure is defined in rscdefs.h and shown below.

typedef struct rscdirectaccess
{

RscFileHandle rfHandle; /* resource file handle */
FILE *filerP; /* resource file pointer from fopen */
unsigned long filePos; /* position of resource in the file */
unsigned long rscSize; /* size of the resource */

} RscDirectAccess;

Once the application has this information, it can read the resource file itself instead of
relying on the Resource Manager to read the resource. This gives the application
complete control of the resource and the memory it occupies. The application does not
have to be concerned about more of the resource being read than it needs or keep the
resource file open after the resource has been read. The application does need to
allocate the memory into which the resource is read.

Querying Resource Information

Four functions are provided for retrieving information about resources and resource
files. These functions provide a tiered query structure in which an application can
query:

• Resource File Information - Using mdlResource_queryFile and
mdlResource_queryFileHandle, an application can query the number
of different resource classes and obtain a list of the resource classes in
a file. Additionally, they can query for a version and identity of the
resource file.

• Resource Class Information - Using mdlResource_queryClass, an
application can query the number of resources in a specific class and
the resource IDs for each resource instance in a specific class in the
resource file. An application can also request the alias of a specific
resource instance and the next available resource ID which can be
used in the resource file for that class.
MicroStation MDL Programmer’s Reference Guide 6-19

MicroStation Resources
Querying Resource Information
• Resource Information - Using mdlResource_query, an application can
query the size, type (class), resource ID, source resource file handle,
alias and source resource file name for the specified resource.

This information can be useful for applications which may need to perform lookups
and or processing of multiple resources and files. A sample section of code below
shows the use of these functions. This function locates all resources of a specified class
in a specified resource file and returns information about both the resource file (the file
handle) and the resource located. It returns information about one resource at a time.

int findResourceInfo
(
char *rscFile, /* Name of file resource we are using */
ULong class, /* Type of resource we are looking for */
RscFileHandle *rscHandle, /* Resource file containing resources */
Long *rscId, /* Resource ID of the one we found */
ULong *rscSize, /* Size of the resource we found */
void *resource /* The resource we found */
)
{

static int rscIndex = -1;
static int rscCount = 0;
static ULong lastClass = 0L;
ULong *classes;
int i, numClasses;

/* If we have a left over resource - free it now */
if (resource)

mdlResource_free(resource);

/* If don't have any info yet then get initial info
from the resource file */

if ((rscId == 0L) || (class != lastClass))
{

lastClass = class;
if (*rscHandle) /* Close previous rsrc file if open */

mdlResource_fileClose(*rscHandle);
*rscHandle = 0;

/* Get number of resource classes in file */
if (mdlResource_queryFile(&numClasses, rscFile,

RSC_QRY_NUMTYPES))
return(ERROR);

if (!(classes = malloc(sizeof (ULong) * numClasses)))
return(ERROR);

/* Now step through classes looking for the one we want */
for (i = 0; i < numClasses; i++)

if (classes[i] == class)
6-20 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
Querying Resource Information
break;
if (i >= numClasses)

return(ERROR);

/* Now open the rsrc file & initialize the processing info */
if (mdlResource_openFile(rscHandle, rscFile, FALSE))

return(ERROR);
rscIndex = -1;
if (mdlResource_queryClass(&rscCount, *rscHandle, class,

RSC_QRY_COUNT, 0))
{

mdlResource_closeFile(*rscHandle);
*rscHandle = 0;
return(ERROR);

}
}

/* If we are here, we have an open rsrc file and the number of
resources in the rsrc file for the class we're looking for */

*rscId = 0L;
*rscSize = 0L;
if (++rscIndex >= rscCount)
{

/* We are done with the current resource file - clean up */
mdlResource_closeFile(*rscHandle);
*rscHandle = 0;
rscIndex = -1;
rscCount = 0;

}
else
{

/* Not done with the current rsrc file - get next resource */
if (mdlResource_queryClass(rscId, *rscHandle, class,

 RSC_QRY_ID, &rscIndex))
return(ERROR);

/* Load found resource into memory */
if (!(resource = mdlResource_load(*rscHandle, class, *rscId)))

return (ERROR);

/* Get resource size information */
if (mdlResource_query(rscSize, resource, RSC_QRY_SIZE))

return (ERROR);
}
return (SUCCESS);

}

MicroStation MDL Programmer’s Reference Guide 6-21

MicroStation Resources
A Resource Programming Example
A Resource Programming Example
In the simplest case, an application can create a resource and add it to a resource file
simply by defining the resource as a structure in the application’s local memory,
initializing it, and finally adding it using mdlResource_add. This method (demonstrated
below) does not demonstrate how to handle variable sized arrays, which must be
buffered before being added to a resource file.

The following function also shows the incoming resource being updated to reflect the
date last accessed via the time function and then being rewritten to the resource file.

/*---+
| name initApplicationDefaults |
| |
| Initializes our application data. |
| |
| author BSI 4/91 |
+---*/
Private void initApplicationDefaults
(
void
)
{

OurSettings *prefsDataP;
int prefsRscSize;
if ((prefsDataP=mdlResource_load(rscHandle, RTYPE_SprinklerDefaults,

RSCID_SprinklerDefaults)) == NULL)
{

/* resource does not exist, load defaults manually and then
write the preferences to the file */

prefsData.sprinklerSettings.shape = 0;
prefsData.sprinklerSettings.sweep = 360;
prefsData.sprinklerSettings.spray = 0;
prefsData.activePipeType = PIPE_MAINLINE;
prefsData.pipeSettingsP = &mainlineSettings;
prefsData.mainlineSettings.diameter = 3;
prefsData.mainlineSettings.color = 7;
prefsData.mainlineSectionLength = 100.0 * tcb->uorpersub;
prefsData.lateralSettings.diameter = 1;
prefsData.lateralSettings.color = 10;
prefsData.pumpSettings.maxFlowRate = 200;
prefsData.pumpSettings.goldPlated = FALSE;
prefsData.lastAccessed = prefsData.created = time(NULL);
mdlResource_add(rscHandle, RTYPE_OurSettingsPrefs,

 RSCID_SettingsPrefs, &prefsData,
 sizeof(OurSettings), NULL);

}

6-22 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
A Resource Programming Example
else
{

/* load settings from resource */
mdlResource_query(&prefsRscSize, prefsDataP, RSC_QRY_SIZE);
mempcy(&prefsData, prefsDataP, prefsRscSize);

/* Update access time and write back to prefs file */
prefsDataP->lastAccessed = time(NULL);
mdlResource_write(prefsDataP);

/* ALWAYS remember to free the resource.... */
mdlResource_free(prefsDataP);

}
mdlDialog_synonymsSynch(NULL, SYNONYMID_SprinklerSettings, NULL);
prefsData.simulationSettings.currFlowRate = 50;
prefsData.simulationSettings.wettedColor = 11; /* YELLOW */

}

Working with resources containing variable sized arrays means that the application is
required to know where in the resource structure it is at all times, or needs to calculate
the proper position using mdlDialog_fixResourceAddress as described above. Once
you know how to traverse a structure and how the structure is put together, modifying
and creating the structure becomes relatively straightforward.

The key areas to be concerned about when doing this are:

1. Once mdlDialog_fixResourceAddress is required, it must continue to
be used from that point forward.

2. Remember that variable sized arrays are stored as a long length N
followed by N instances of the array entry. Note that variable sized
character arrays are always NULL terminated. This means that every
variable sized character array has a length of 1 plus the number of
characters in the array - an empty array has a length of 1 and a single
entry set to 0.

3. When creating new resources, allocate a memory area that will be
large enough to contain the whole resource structure.

4. When resizing resources, do the same as above, copy the resource
into the new area, resize the resource, and then copy the data back
into the resized resource.

The following sample function performs both the modification and creation of a text
item.

/*---+
| |
| name updateAndCreateTextRsc |
| |
MicroStation MDL Programmer’s Reference Guide 6-23

MicroStation Resources
A Resource Programming Example
| This function will update a text resource which was passed in |
| and also create a new text resource |
| |
| author BSI 10/92 |
| |

| typedef struct ditem_textrsc |
| { |
| ULong commandNumber; |
| ULong commandSource; |
| long synonymsId; |
| ULong helpInfo; |
| ULong helpSource; |
| long itemHookId; |
| long itemHookArg; |
| byte maxSize; // max # of chars in field // |
| char formatToDisplay[16];// format string to convert |
| from internal // |
| char formatToInternal[16];// convert to internal from |
| display str // |
| char minimum[16]; // minimum value // |
| char maximum[16]; // maximum value // |
| ULong mask; // only used with integers // |
| UShort attributes; // other attributes // |

| #if defined (resource) |
| char label[]; |
| char accessStr[]; |
| #else |
| long labelLength; |
| char label[1]; |
| #endif |
| } DItem_TextRsc; |
| |
+--*/

Public void updateAndCreateTextRsc
(
long rscId, /* => resource id */
void *rsrcP /* => Resource loaded from tempFileH */
)
{

long baseRscSize, itemRscSize;
void *rscP;
DItem_TextRsc *nrsrcP = rsrcP;
DItem_TextRsc *newTextRscP;
void *tmpRscP, *auxInfoP;
long sAuxInfo;
6-24 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
A Resource Programming Example
if (rsrcP)
{

/* Before doing anything else, modify the resource - since
we may be changing the size of the resource as well as
modifying information within it, we must locate all variable
information, copy out what we need and also calculate the
size of the new resource. */

/* First lets get past the label to the access string */
tmpRscP = mdlDialog_fixResourceAddress((char *)rsrcP,

(char *)nrsrcP->label +
nrsrcP->labelLength, sizeof (long));

/* Get the length of the access string and save the string */
sAuxInfo = *((long *)tmpRscP) + sizeof(long);
auxInfoP = malloc((int)sAuxInfo);
memcpy(auxInfoP, tmpRscP, (int)sAuxInfo);

/* Now determine the new size of the resource. First get the
size of everything up to the access string loc, then the
then the whole resource. */

baseRscSize = (long)(mdlDialog_fixResourceAddress((char *)rsrcP,
(char *)nrsrcP->label + strlen (dialogP->text) + 1,
sizeof (long)) - rsrcP);

itemRscSize = (long)mdlDialog_fixResourceAddress (NULL,
(char *)(baseRscSize + sAuxInfo), sizeof (long));

/* Now resize the resource and modify the info. */
nrsrcP = mdlResource_resize(rsrcP, itemRscSize);

/* If couldn't resize the resource, error */
if (!nrsrcP)
{

sprintf(dialogP->text, "Error on resize (temp): %d",
mdlErrno);

mdlDialog_openAlert(dialogP->text);
mdlSystem_exit(-1, TRUE);

}

/* Assign the new information to the resource */
nrsrcP->attributes = dialogP->itemAttributes & 0x0ffff;
nrsrcP->mask = dialogP->mask;
nrsrcP->maxSize = dialogP->textAttrs.maxSize & 0x0ff;
newdiRP->itemArg = dialogP->itemArg;
strcpy(nrsrcP->formatToDisplay, dialogP->textAttrs.ftd);
strcpy(nrsrcP->formatToInternal, dialogP->textAttrs.fti);
if (!dialogP->textAttrs.max[0])
{

if (dialogP->textAttrs.min[0])
strcpy(dialogP->textAttrs.max,
MicroStation MDL Programmer’s Reference Guide 6-25

MicroStation Resources
A Resource Programming Example
dialogP->textAttrs.min);
}
else
{

if (!dialogP->textAttrs.min[0])
strcpy(dialogP->textAttrs.min,

dialogP->textAttrs.max);
}
strcpy(nrsrcP->minimum, dialogP->textAttrs.min);
strcpy(nrsrcP->maximum, dialogP->textAttrs.max);

/* Copy new label into the resource */
nrsrcP->labelLength = strlen(dialogP->text) + 1;
if (strlen (dialogP->text))

strcpy(nrsrcP->label, dialogP->text);
else

nrsrcP->label[0] = '\0';
/* Address the access string and copy that information back
/* into the resource */

rscP = (void *)mdlDialog_fixResourceAddress((char *)nrsrcP,
(char *)nrsrcP->label + nrsrcP->labelLength,

sizeof(long));
memcpy(rscP, auxInfoP, sAuxInfo);
free(auxInfoP);

/* Now write the modified resource into memory */
mdlResource_write(nrsrcP);
mdlResource_free(nrsrcP);

/* To address Resource Manager bug, close & reopen rsc file */
mdlResource_closeFile(dialogP->tempFileH);
mdlResource_openFile(&dialogP->tempFileH,

tempRscFileName, TRUE);
/* Reload the resource */
nrsrcP = mdlResource_load(dialogP->tempFileH,

RTYPE_Text, rscId);
}

/* Now create a new text resource with no access string and the same
same label as the one we just updated append with "-New"
We first need to determine the size of our new rsc by going to the
label location, adding in the len of the existing label and the
length of the extension. Then we need to add in the length of the
NULL access string to get the full resource size */

baseRscSize =
(long)(mdlDialog_fixResourceAddress((char *)nrsrcP,
 (char *)nrsrcP->label + nrsrcP->labelLen + strlen("-New"),
 sizeof(long)) - nrsrcP);

itemRscSize = (long)mdlDialog_fixResourceAddress (NULL,
6-26 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
Binary Portability
(char *)(baseRscSize + sizeof(long) + 1,
sizeof(long));

/* Now malloc the resource, initialize it, and add it to the
the resource file */

if (newTextRscP = malloc(itemRscSize))
{

memset(newTextRscP, 0, itemRscSize);
newTextRscP->attributes = TEXTATTR_NOCONCAT;
newTextRscP->mask = NOMASK;
newTextRscP->maxSize = 45;
newdiRP->itemArg = NOARG;
strcpy(newTextRscP->formatToDisplay, "%s");
strcpy(newTextRscP->formatToInternal, "%s");

/* Copy new label into the resource */
newTextRscP->labelLength = nrsrcP->labelLen + strlen("-New");
strcpy(newTextRscP->label, nrsrcP->label);
strcat(newTextRscP->label, "-New");

/* Address the access string and indicate that a NULL
string is enclosed - no access string */

rscP = (void *)mdlDialog_fixResourceAddress
((char *)newTextRscP,
(char *)newTextRscP->label +
newTextRscP->labelLength, sizeof(long));

(long *)rscP = 1L;

/* Now add the resource to the file */
mdlResource_add(dialogP->tempFileH, RTYPE_Text, rscId+100,

newTextRscP, itemRscSize, NULL);
}

}

Binary Portability
Binary portability means a binary file created on one computer can be copied to and
read on other computers of the same or different architecture. When a file is binary
portable, it does not need to be converted to the native computer’s format for its data
to be read properly. The main benefit of having binary portable files is that users who
run MicroStation on a variety of hardware platforms can share data freely without
caring about the differences of their hardware configurations.

Although binary portability may seem like an obvious and simple goal, differences in
computer architecture and compiler technologies can make it very challenging to
achieve. The goal of the Binary Portability functions is to simplify this task.
MicroStation MDL Programmer’s Reference Guide 6-27

MicroStation Resources
Differing data representations
The way data is written to a file for a given computer is a reflection of how that data
was represented in the computer’s memory. Therefore, where two computers differ in
their representation of data types in memory, they will also differ in their
representations on disk. At the same time, dumping data to disk, verbatim, is expedient
from a programming perspective and fast in terms of execution time.

Let’s look at examples of how the same data written to files on different computers can
appear drastically different on disk. Using the following structure:

struct orderStruct
{

long orderNumber;
char orderType;
short orderQuantity;

};

If we wrote it to a binary file with the following values:

orderNumber = 1000
ordertType = 'a'
orderQuantity = 50

Hexadecimal dumps of the data files would appear like this on the following
computers:

Even though it is the same information, it is represented differently on the different
computers. The reason stems mainly from the various machine architectures. (It should
be noted, however, that different operating systems, and even compilers, can differ in
the way they represent data on the same computer).

Differing data representations
Here are the main factors that will lead to different data representations in computer
memory, and therefore in a disk file:

Alignment restrictions

Some computers impose restrictions on the location (in memory) of certain data types.
They require that the address of the data be a multiple of the size of the data type. For
example, a long integer (4 bytes in size) would have to begin in memory at an address
that was a multiple of 4. A double precision floating point datum would have to start at

Computer Hex dump

MS-DOS based PC E8 03 00 00 61 32 00

Intergraph Clipper Workstation E8 03 00 00 61 00 32 00

SUN SPARCstation 00 00 03 E8 61 00 00 32
6-28 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
Byte ordering
an address that was a multiple of 8 bytes. On the other hand, some computers don’t
care. The PC (running MS-DOS, MSC C compiler) does not have any memory
alignment restrictions. These differences in alignment restrictions (or the lack thereof)
can be seen in the orderStruct example above. Since orderQuantity is a short
integer, the Clipper Workstation requires a pad byte after the orderType structure
member to ensure the short alignment for orderQuantity. The PC, however, requires
no such padding. As a result, the PC wrote the two members out to disk as 61 32 00
whereas the Clipper workstation wrote them out as 61 00 32 00.

Byte ordering

Computers differ in the way they order the bytes that compose multi-byte data types.
For example, on some computers, the low-order byte of a long integer will occupy the
lowest memory address of the integer. On other computers, the high-order byte will be
first (in the lowest memory position). Computers of the first type are known as little
endian computers. Computers that place the high-order byte of a multi-byte data type
first are known as big endian computers. In the orderStruct example, the Sun
SPARCstation wrote the orderNumber value 0x000003E8 to disk as 00 00 03 E8,
whereas the PC and the Clipper wrote it to disk as E8 03 00 00. From this we can infer
that the SPARCstation is a big endian machine (like the HP, Macintosh and
IBM RS-6000), and the PC and Clipper workstation are little endian machines.

Floating point standards

Although most microcomputers adhere to the IEEE standards for floating point data
representation, a few (DEC VAX computers for instance) allow for other
representations, the difference being in the number of bits devoted to the mantissa and
exponent of the number.

Bitfield representation

Generally, the more frequently bitfields are used, the more hardware-dependent (and
sometimes compiler-dependent) a data file becomes. This is due to the very relaxed
definition that has been given for their implementation in the C programming
language. (Although the use of bitfields in structures written to binary portable files is
not recommended, there is limited support for them when using the Binary Portability
functions).

MicroStation file types and their portability

Design Files

Prior to version 4.0 of MicroStation, the only binary portable files were design files and
cell libraries. These file formats include little endian byte ordering, IEEE and VAX
double precision floating point data, no alignment restrictions, and miscellaneous data
types taken from the VAX/PDP architecture. As new element types have been
developed, the format has been more strictly little endian, no alignment, and IEEE
MicroStation MDL Programmer’s Reference Guide 6-29

MicroStation Resources
4.x Resource Files
double oriented. From here on in this document, this format will be referred to as
“packed little endian” format.

✍ MicroStation takes care of converting elements read from or written to
design files. The only exceptions are application defined elements (Type
66, Level 20) and user data linkages on all elements. Application
developers who update design files directly via these two exceptions are
encouraged to generate their data in packed little endian format.

4.x Resource Files

In version 4, MicroStation resource files were introduced. These files, by default, were
not binary portable. Applications could make them binary portable, however, by
generating them in packed little-endian format and using the binary portability routines
to convert them after mdlResource_load calls (“on the way in”) and before
mdlResource_write or mdlResource_add calls (“on the way out”). The routines used
by the application to convert the resources were mdlCnv_bufferFromFileFormat and
mdlCnv_bufferToFileFormat, respectively.

5.0 Resource Files

In version 5, the resource file format has been enhanced to include information about
the file’s format. This allows 5.0 resource files to be converted automatically by the
MicroStation Resource Manager. Hence 5.0 resource files are binary portable. Unlike
design files and portable 4.x resource files, 5.0 resource files are not generated in
packed little endian format. Instead, 5.0 resource files are formatted according to the
platform on which they are generated. This makes resource file accesses fastest on the
native platform of the file since no conversion is required there.

Binary portable files
Prior to version 4.0 of MicroStation, the only binary portable files were design files and
cell libraries. These file formats were largely inherited from the IGDS application on
which MicroStation was originally based. The original format includes little endian byte
ordering, IEEE and VAX double precision floating point data, no alignment restrictions,
and miscellaneous data representations taken from the VAX/PDP architecture. As new
element types have been developed, the format has been more strictly little endian, no
alignment, IEEE double oriented, and will continue to stay that way. From here on in
this document, this format will be referred to as “packed little endian” format.

Application developers who update design files directly using User Attribute Data
Linkages on elements and/or User-defined Elements (Type 66, Level 20) have also
been encouraged to generate their data in packed little endian format to maintain the
file’s portability.

Along with MicroStation version 4.0 came a new file type: the resource file. Although
the MicroStation resource compiler did not generate resource files in binary portable
6-30 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
How the Binary portability functions work
format, it was still possible to create binary portable resource files using Resource
Manager functions to write the data. Again, packed little endian format was used
internally and was encouraged for use among application developers.

As the number and complexity of MicroStation applications increased, and as
MicroStation became available on more platforms, it became apparent that both the
developers of MicroStation and its third party applications would need a set of
automated tools for ensuring that files remained binary portable. Hence, the Binary
Portability functions.

How the Binary portability functions work
The Binary portability functions use data definition resources to convert data from
one machine format to another. A data definition corresponds to a data structure, or in
terms of the C language, a typedef.

There must be one data definition resource for every structure type that will need to be
written to or read from file. Each data definition resource is assigned a unique resource
ID which is passed in as an argument to a binary portability function.

The data definition is the foundation for converting data to or from a file, whether the
data comes from a Type 66 element, a user attribute linkage on another element type,
a resource file, or an application-defined data file.

Four Recipes for Binary portable data
This section outlines four different scenarios for how an application might use the
binary portability routines.

A. Type 66 Level 20 Elements (Application Elements)

When building your application

1. Create a .mt file that contains createdatadef statements for every struct
that will be used to define the data portion of an application element.
The .mt file must include the header files where the structures are
defined. It must also include pragmas for treating the structure as
packed little endian data. For example:

#pragma packedLittleEndianData
#include <myfile.h> /* This defines "mytype66datastruct" */
createDataDef (mytype66datastruct,

MY_TYPE66_DATADEF_ID);

2. Update your application’s make file to compile the .mt file using the
rsctype compiler. The resulting .r file must be compiled with rcomp,
MicroStation MDL Programmer’s Reference Guide 6-31

MicroStation Resources
At execution time, when creating application elements
and the subsequent .rsc file must be lib’ed into your application’s .ma
file using rlib.

At execution time, when creating application elements

1. Initialize an element buffer to zeroes.

2. Call mdlCnv_bufferToFileFormat to convert your application data
into the data portion of the element buffer starting at the 20th word of
the element. Save the output (file format) buffer size from
mdlCnv_bufferToFileFormat. The data definition ID is the one you
assigned in step 1 (i.e., MY_TYPE66_DATADEF_ID).

typedef struct applelem
{

Elm_hdr ehdr; /* 14 words */
Disp_hdr dhdr; /* 4 words */
short signature; /* 1 word */
short dataPortion[768 - 19];

} ApplElement;

3. Fill in the element header:
- type (MICROSTATION_ELM)
- level (APPLICATION_LEVEL)
- wordsToFollow = 17 + (size of converted application
data+1)/2
- attributeIndex = wordsToFollow - 14
- xlow, ylow, zlow (mdlCnv_toScanFormat(MINI4))
- xhigh, yhigh, zhigh (mdlCnv_toScanFormat(MAXI4))
- signature = (assigned to your application by BSI). You must
byte-swap the signature on big endian machines.

4. Add the element to the design file.

At execution time, when reading application elements

Use mdlCnv_bufferFromFileFormat to convert the data portion of the
element to the native machine’s format.

B. User Attribute Linkages

When building your application

1. Create a .mt file that contains createdatadef statements for every struct
that will be used to define the data portion of your user attribute
linkages. The .mt file must include the header files where the
structures are defined. It must also include pragmas for treating the
structure as packed little endian data.
6-32 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
At execution time
For example:

#pragma packedLittleEndianData
#include <myfile.h> /* This defines "mylinkagestruct" */
createDataDef(mylinkagestruct, MYLINKAGE_DATADEF_ID);

2. Update your application’s make file to compile the .mt file using the
rsctype compiler. The resulting .r file must be compiled with rcomp,
and the subsequent .rsc file must be lib’ed into your application’s .ma
file using rlib.

At execution time

Use the mdlLinkage_… routines for appending, extracting and deleting
user data linkages to/from elements. The mdlLinkage_… routines take
data definition IDs and call the mdlCnv_… functions internally.

C. 4.x Resource Files

When building your application

1. Create a .mt file that contains createdatadef statements for every struct
that will be used to define a binary portable resource. The .mt file
must include the header files where the structures are defined. It must
also include pragmas for treating the structure as packed little endian
data. For example:

#pragma packedLittleEndianData
#include <myfile.h> /* This defines "mystruct", used below. */
createDataDef (mystruct, MYSTRUCT_DATADEF_ID);

2. Update your application’s make file to compile the .mt file using the
rsctype compiler. The resulting .r file must be compiled with rcomp,
and the subsequent .rsc file must be lib’ed into your application’s .ma
file using rlib.

At execution time

1. Call mdlResource_openFile to open the target file.

2. Call mdlResource_queryFileHandle to ensure that the file is 4.x
format. If it is 5.0 format, see the next scenario.

3. Call mdlResource_load to load the target resource.

4. Call mdlCnv_bufferFromFileFormat to convert the data to the current
machine format. The data definition ID will be the same as the one
you assigned in the createDataDef statement in step 1.

✍ If a data type will be converted often, you can avoid having the data
definition loaded and interpreted by mdlCnv_bufferFromFileFormat each
MicroStation MDL Programmer’s Reference Guide 6-33

MicroStation Resources
D. 5.0 Resource Files
time by saving the conversion rules generated by
…_bufferFromFileFormat the first time your data definition is used.

5. Use the resource.

6. mdlCnv_bufferToFileFormat to convert the data back to file format.
Use the same data definition ID (or conversion rules if you have them)
used in step 6.

7. Call mdlResource_write to write the updated resource back to the file
or mdlResource_add to add a new resource to the file.

D. 5.0 Resource Files

When building your application

If all your resources are generated by rcomp, you do not need to do anything special
when building your application. Version 5.0 of rcomp will automatically generate data
definitions for the resources it compiles. Steps 1-4 are only necessary if you have
resources that only get generated at execution time using Resource Manager functions.

1. Update your header files to have resourceclass statements for every
typedef that will be used to define resources created solely by
resource manager function calls.

2. Create a .r file that simply includes the header files updated in the
previous step.

3. Update your make file to rcomp the .r file from step 2 with the -r
option. This causes rcomp to generate a data definition for each of the
resourceclass statements encountered in your header files. The data
definition ID will be the same as the resourceclass ID. (The -r option
can be turned on by setting the bmake macro rcompOpts = -r).

4. Update your make file to rlib the .rsc file generated from the previous
step into your application’s .ma file.

At execution time

✍ When dealing with 5.0 resource files, the version 5.0 Resource Manager
makes all calls to the binary portability routines for the application. The
application will only need to make sure that the appropriate data
definitions exist in a place where the resource manager may find them.
When loading 5.0 resources, the resource manager will search for data
definitions of the corresponding type in all the resource files opened by
the calling application as well as those opened by MicroStation.
6-34 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
Linkage Functions
1. If you know you are dealing with 5.0 resource files or 4.x resource
files with the same format as the current platform, there is no special
action to take at execution time. Just open the file
(mdlResource_openFile) and load the resources (mdlResource_load).
If there is a chance that you might be loading resources from a
“foreign” 4.x file that has packed little endian resources, proceed to
step 4 in the previous scenario, “4.x Resource Files”. Likewise, when
adding resources, there is no special action to be taken unless you are
dealing with a 4.x resource file.

✍ When an application adds resources via mdlResource_add, the resource
manager will automatically add the appropriate data definition in the
destination resource file, too. If the resource manager cannot find the
appropriate data definition, the add succeeds, but that particular resource
may not be loadable on another platform.

Linkage Functions
Although this section has talked about portable resource information, the Binary
Portability Library provides for portable data structures in design files as well via the
mdlLinkage_… functions which indirectly call the mdlCnv_buffer… functions
documented above. This provides for portable data in both user attribute data assigned
to existing MicroStation element types as well as in Application elements (Type 66/
Level 20). See “Element Linkage” in the MDL Function Reference Manual for
descriptions of the mdlLinkage_… functions.

Resource Source Generator
The Resource Source Generator is used to generate source resource (.r) and include
(.h) files from compiled (binary) resource (.rsc) or MDL application (.ma) files. The
source files are given the name of the compiled file with the appropriate .r and .h
suffixes and are saved in the same directory as the compiled file.

The following source files are generated from the binary resource file (xxxxxxxx is the
base name of the compiled resource file):

File Description

xxxxxxxx.r Base resource file containing all recognized resource data contained
in the binary file.

xxxxxxxx.h Base header file containing all necessary resource-based defines (for
example resource IDs).

xxxxmsgs.r Message and string list resources, if any, are defined in the binary
resource file.
MicroStation MDL Programmer’s Reference Guide 6-35

MicroStation Resources
Generate Resource Source dialog box
Generate Resource Source dialog box
When the Resource Source Generator is loaded, the Generate Resource Source dialog
box opens. Use this dialog box to select the binary resource files and MDL application
files for processing. To add a file to list of files to process, select the file in the Files list
box and click the Add button. To remove a file from the list of files to process, select
the file in the Resource Files to Process list box and click the Remove button.

Click the OK button to generate the source files for the binary files listed in the
Resource Files to Process list box.

xxxxxcmd.r Command table resource.

xxxxxtxt.h Static text defines referenced by the xxxxxxxx.r file. The defines
generated in this file are generally of the format TEXT_rrrr#_<string>
where rrrr is the resource class (for example, dBox for a dialog box
resource), # is the resource ID, and string is the text with all
punctuation and white space (tabs and spaces) removed.

File Description

Figure 6.2
Generate Resource
Source dialog box.
6-36 MicroStation MDL Programmer’s Reference Guide

MicroStation Resources
Resource Utility Programs
✍ The following resource classes are recognized by the Resource Source
Generator:

Resource Utility Programs
Resource utility programs include the conversion utility and file dump utility. Resource
utility programs let you create and manipulate resource files.

cmdcnvert conversion utility for command table source files
The cmdcnvrt utility converts old-style (pre-MicroStation PC 4.0) .txt command table
source files into the new-style .r source files read by the MicroStation Resource
Compiler. After the conversion is complete, the output .r file must be edited to have a
#define statement for each CT_ commandtablename referenced in the file. The syntax
of the cmdcnvrt utility is as follows:

cmdcnvrt [-flags] file

Class Resource Definition Class Resource Definition

dBox Dialog Box list List (obsolete-use lBox
items instead)

CmdT Generic Command Table mBar Menu Bar

Cmds MicroStation Command
Table

pdMn Text Pulldown Menu

str# Message List pdOM Pulldown Option Menu

strL String List pdCM Pulldown Color Picker
Menu

cPck Color Picker oBtn Option Button

gnrc Generic pBtn Push Button

iFrm Icon Command Frame sBar Scroll Bar

iPal Icon Command Palette dTxt Text

iCmd Icon Command mTxt Multiline Text

iCSm Icon Command Small Icon tBtn Toggle Button

iCLg Icon Command Large Icon syns Synonyms

Icon Icon prcB Precision Button

levm Level Map cmnd Command

lBox List Box
MicroStation MDL Programmer’s Reference Guide 6-37

MicroStation Resources
rdump resource librarian dump utility
-flags can be one of the following:

rdump resource librarian dump utility
The rdump utility dumps the contents of a resource file. It is useful if you are having
trouble loading resources and want to examine the contents of a .r file. The syntax of
the rdump utility is as follows:

rdump [-flags] file

-flags can be one of the following:

value description

-oFile Set name of output file.

-v Verbose: show progress of conversion.

value description

-t<class> Restrict the dump to a particular type of resource. class is
the resource class as specified in the resourceclass
statement. It can be specified in hex, decimal or character
constant form. For example, -t'Msgs' and -t0x4d736773
are the same.

-r<resourceID> Restrict the dump to a particular resource ID.

-v Verbose: produce a detailed dump of each resource.
6-38 MicroStation MDL Programmer’s Reference Guide

7 Building Applications
This chapter demonstrates the normal process required to build an
MDL application.
Building Application Process
The process consists of the following steps:

• Creating a makefile and using the bmake utility.

• Creating and compiling an application command table.

• Generating resource files from C type definitions.

• Compiling resources.

• Compiling MDL source files.

• Using the MDL librarian (mlib) (optional).

• Linking the application source files.

• Using the resource librarian (rlib) to “put it all together.”

Each step corresponds to a section of this chapter. “Creating a Makefile and Using the
bmake Utility” on page 7-2 describes the developer’s primary task when creating a new
application; developing the makefile. All the other steps should be automated by
placing their specific commands within the makefile.

This chapter will not tell you which MDL functions to use to accomplish specific tasks,
or how to arrange your basic source code. It assumes that you have already created
either an outline or flowchart to organize the operation of your application, and that
you are able to research the required functions needed from within the MDL Function
Reference Manual.

To demonstrate how the MDL tools are used, this chapter will follow the construction
of the MDL sample application basic.ma. This is the same MDL application that is
discussed in “A Complete Example” on page 18-1. Therefore, you may want to review
these two sections of the manual in conjunction with one another.
MicroStation MDL Programmer’s Reference Guide 7-1

Building Applications
Creating a Makefile and Using the bmake Utility
Creating a Makefile and Using the bmake Utility
The MDL development environment includes a utility called bmake that produces
executable images from makefiles. These makefiles contain the commands and
directives needed to build your application. bmake was developed by and for Bentley
Systems specifically for MicroStation development.

In programming environments such as MDL, changes to one file often causes other
files to become obsolete. bmake recognizes when files have changed and detects and
recreates any obsolete files based on the relationships between the file creation times.

For example, suppose you make a change to one of your MDL source files. For your
change to be reflected in the application’s executable, you must first run the MDL
compiler on your source (.mc) file to generate or make its object (.mo) file. Next, you
must run the MDL linker on your object file(s) to create the application (.ma) file.

In your makefile, you would first list your object file as a target file and tell bmake
that it depends on the source file. When the target file is older than any of its
dependents, the build commands that recreate the target (in this case, the MDL
compiler) are executed. Next you list your application file as a target file that depends
on the object file. bmake always processes makefiles linearly from beginning to end,
so that both the object and the application files are rebuilt (assuming there are no
errors).

Using file extensions to differentiate types of files is good programming practice.
bmake exploits this by allowing you to define rules that describe how to create a file
with one extension from a file of another extension. After you define these rules, you
do not have to explicitly tell bmake how to recreate every target file. It infers the build
commands from the file extension of the target and its dependencies and your rules.

In many instances, you will collect your rules and definitions into a single make
include (.mki) file like the MicroStation mdl.mki file which contains the default macros
and build rules for MicroStation MDL applications. This file is then included by your
makefile to provide the needed macro and rule definitions.

You should use bmake instead of similar programs you may have used in other
development environments for the following reasons:

• bmake allows include files for defining items common to many
makefiles.

• bmake supports conditional compilation in makefiles (as in ifdef,
indef, elif, else, endif).

• bmake allows the inclusion of other makefiles and header files
containing default rules and macros.

• bmake allows different rules that apply to files in different directories.
7-2 MicroStation MDL Programmer’s Reference Guide

Building Applications
Makefile format
• bmake allows multiple targets for the same dependency list.

• bmake does not have the typical memory limitations of other make
programs.

• bmake can create link files from the dependency list in a makefile,
making it easier to add new source files.

• bmake lets you define constants on the command line.

• bmake is available on every platform that MDL is available on.

• The same makefiles can be used on every platform on which MDL is
available.

✍ It would be possible to use bmake for development with other products if
a new set of rules were created. Be aware, however, that one of bmake’s
greatest strengths is its platform independence, so any advantage of using
it would be lost if the rules were not designed with this in mind.

Makefile format
The makefile format is similar to the format for input files to other make programs.
Each makefile must contain a series of records, each of which must be one of the
following types:

• Macro

• Rule

• Dependency

• Conditional

✍ Rules, conditionals and dependencies must be separated by blank lines.

A ‘\’ (backslash) as the last character on a line signals that the line continues. (To end
a line with the backslash character, use two consecutive backslashes).

The ‘#’ character denotes a comment. bmake ignores the remainder of the line
following this character. Comment lines cannot be continued over multiple lines.

Each makefile record type is described below.

Example
A listing of the makefile for basic.ma can be found in “A Complete Example” on page
18-1.
MicroStation MDL Programmer’s Reference Guide 7-3

Building Applications
Macros
Macros

There are three locations where a bmake macro may be defined:

1. In the body of a makefile (or in BMAKE_OPT).

2. As an environment variable, outside of bmake.

3. On the command line using the -d command line option.

bmake looks for definitions in the above order, so macros defined in makefiles take
precedence over those defined elsewhere.

Macros defined in a makefile are not case sensitive, but those defined otherwise will be
if you are working under UNIX (MS-DOS and Macintosh are never case sensitive).

To define a macro in the body of a makefile, use one of the following formats:

bmake performs macro substitution when it reads $_macro_ in the input makefile,
where the ‘_’ characters signify the type of expansion:

These macros are reserved and expand as follows:

format description

macro = definition Standard assignment. This is the most commonly
used method.

macro =% definition Standard but value being assigned is expanded
before assignment.

macro + definition Definition is appended to existing macro value.

macro +% definition Definition is appended to existing macro value,
and is expanded before being appended.

macro description

$(name) Expand by iterative substitution.

${name} Expand by iterative substitution removing the last
character if it is a path separator character.

$[name] Expand by value; expand the macro to its literal string
value without doing any further substitution.

macro expansion

$@ the current target file

$? all dependency files that are newer than the target file

$= the newest dependency file
7-4 MicroStation MDL Programmer’s Reference Guide

Building Applications
Macros
bmake also predefines the following macros:

Example
This is a simple macro from basic.mke:

21 BaseDir = $(MS)/mdl/examples/basic/

Advanced Example
Suppose you have some modules that you want to compile with the default .c.o rule,
except you want -I$(appDir) included on the compiler command line of the PC. Here
is one way to accomplish this:

%if pm386
savecopt =% $[copt]
copt + -I${appDir}

%endif
myfile1$(oext) : myfile1.c
myfile2$(oext) : myfile2.c

%if pm386
copt =% $[savecopt]

%endif

$< the current dependency file

$* the base filename of the target file

$% the directory of the first dependency

platform macro(s)

MS-DOS msdos

Macintosh mc68000, macintosh

Vax vax

Clipper unix, ip32, clipper

Sun OS unix, sparc

Solaris unix, sparc, SUNSVR4

HP 700 unix, hp700

Windows NT winNT

DEC Alpha winNT, _ALPHA_

Silicon Graphics unix, SGIMIPS

IBM RS-6000 unix, rs6000

macro expansion
MicroStation MDL Programmer’s Reference Guide 7-5

Building Applications
Rules
Rules

A rule in a makefile defines how to build targets with a given extension from a
dependency with a given extension. The general format of a rule is as follows:

.[dir1;dir2;...;dirN]depExt.targetExt:
buildCommands

If the directories section [dir1;dir2;...] is missing, the rule applies to files in any
directory. If a target file depends on more than one file, the extension of the first one in
the list is used to find the rule. If more than one rule applies to a target, the last rule in
the makefile has precedence. For this reason, you should put rules that are directory-
specific after any non-directory-specific rules in the makefile.

Example (from mdl.mki)
 .mt.r:

$(msg)
> $(o)temp.cmd
-o$@

 %if privateInc
-i$(privateInc)

 %endif
$(rscCompIncs)
$(altIncs)
-i$(publishInc)
-i$(publishIdsInc)
-i$(stdlibInc)
$%$*.mt
<
$(RTypeCmd) @$(o)temp.cmd
~time

Dependencies

A dependency in a makefile specifies that one or more target files depends on one or
more dependent files. The general format of a dependency is as follows:

target1 target2 ... targetN: dep1 dep2 ... depN
buildCommands

If any dependent files are newer than any target files, the build commands are
executed.

Dependencies are always processed in their makefile order, so you should organize
your makefiles accordingly. (That is, if one target depends on another target, its
dependency should appear later in the makefile.)
7-6 MicroStation MDL Programmer’s Reference Guide

Building Applications
Conditional
Build commands are a sequence of lines, executed one after the other, to build the
target file. If a build command returns an error, bmake terminates. If there are no build
commands, bmake attempts to use a predefined rule.

Example
53 $(o)basic.mo : $(baseDir)basic.mc $(baseDir)basic.h

(where (o) has been defined as the object directory.)

 The first character in a build command can have special significance:

The following are built-in bmake commands:

Conditional

A conditional includes or excludes sections of the makefile, depending on whether
macros are present. The following types of conditionals are supported:

character meaning

- Ignore the status returned from this command. Do not terminate if the
command returns an error.

@ Do not echo, even when bmake is not operating in silent mode.

| Echo only this line, even in silent mode. This is useful for informational
messages to the user.

~ Use a built-in bmake command (see below).

>filename Write all lines in the makefile until a < to the specified file. This is
typically used to write the dependencies to a file to generate a link file.

command description

~CURRENT Print the current time.

~TIME Set the target file’s modification date to the date of the newest
dependency file. This should generally be the last build
command for a target file.

directiv
e

description

%ifdef If the macro exists, include subsequent lines.

%if If the expression yields a non-zero result, include the subsequent lines.
The conditional %if defined is functionally equivalent to %ifdef.

%ifndef If the macro does not exist, include subsequent lines.
MicroStation MDL Programmer’s Reference Guide 7-7

Building Applications
Include Files
Example
14 %if defined (msdos)

Include Files

As mentioned earlier, bmake allows you to include other files (.mki files) into the
current makefile using the %include preprocessor directive.

The files included must be written using the same syntax as bmake makefiles. That is
they must be other makefiles or files containing default macro and rule definitions.
Examples of this can be found in all distributed MDL example applications.

Example
27 %include mdl.mki
28 %include mdlexmpl.mki
...
78 %include $(BaseDir)basicrsc.mki

As shown above, basic.mke includes three additional files to assist in, and complete,
the application build process:

%else Use with %ifdef and %ifndef.

%elif Use with %ifdef and %ifndef.

%endif Close an ifdef or if block.

%undef Undefines a macro.

file description

mdl.mki This is the main MicroStation MDL make include file. It contains
the default rules and macro definitions that should always be
used when building MDL applications, Dynamic Link Modules
(DLM), and external programs.

directiv
e

description
7-8 MicroStation MDL Programmer’s Reference Guide

Building Applications
Starting the bmake utility
Starting the bmake utility
After installation, the bmake utility is in the (MS)\mdl\bin directory.

✍ Many of the MDL tools, including bmake, require that the MS environment
variable be set so that they can find the MicroStation home directory. If
you performed a standard installation, the definition of MS would be:

set MS=c:\ustation (DOS)
export MS=/usr/mstation (UNIX)

The command line syntax for starting the bmake utility is as follows:

BMAKE [OPTIONS] MAKEFILE

Normally, [options] are not specified on the command line, but in the BMAKE_OPT
environment variable so that the user does not have to specify them every time bmake
is used. To use BMAKE_OPT, add it to your operating system’s environment variable list.

bmake supports multiple include paths. They may be specified via either the
command line or the environment variable BMAKE_OPT.

mdlexmpl.mki This include file is an example of a project- and/or application-
specific make include file. It provides overrides to certain
macros defined in mdl.mki so that files are placed in a different
location as they are built and also includes rules which build the
output directories needed if they do not already exist. You
should use this file as a template for building your own project
and application make include file. As a rule, your makefile
should never assume output directories exist.

basicrsc.mki This include file is actually another makefile which contains the
steps necessary to complete the building of the basic
application. The steps defined in this file cause the language-
specific portions of the application to be compiled and
combined with the generic portions to create the final
application (.ma) file. It is recommended that the language-
specific portions of an application be separated from the rest of
the application if the application needs to be delivered in
different languages. This makefile is listed in the “Complete
Example” chapter with basic.mke.

file description
MicroStation MDL Programmer’s Reference Guide 7-9

Building Applications
Starting the bmake utility
The standard BMAKE_OPT definitions are as follows:

export BMAKE_OPT=-I$MS/mdl/include/ (UNIX)
set BMAKE_OPT=-I$(MS)\mdl\include (DOS)

Therefore, the command to make basic.ma without BMAKE_OPT set would be:

BMAKE -I$(MS)\MDL\INCLUDE BASIC

But with BMAKE_OPT set, it would be shortened to:

BMAKE BASIC

✍ Existing make files that contain paths to include files need not be changed
if they are only to be used under DOS or UNIX; merely exchange ‘\’ and
‘/’ whenever appropriate. However, if make files will ever be used on any
other platform, they should be modified to conform to the above standard.

Command line options are as follows:

option description

-a Always build. For every dependency, execute the build command
regardless of whether dependent files are newer than the target files.
This option causes bmake to remake all files.

-d Define a macro. For example, including -ddebug=1 on the command
line is the same as specifying debug=1 in the makefile.

-i Ignore errors. Ordinarily, bmake terminates when a build command
returns a non-zero exit status. With this option, bmake ignores errors
and continues.

-l List targets. bmake prints the target file before executing build
commands (helpful for debugging).

-m Missing files are acceptable. Ordinarily, bmake terminates if any
dependency files are missing. With this option, bmake continues.

-n No execution. List, but do not execute the build commands.

-p Print macros as defined (helpful for debugging makefiles).

-s Enter silent mode. Do not print build commands as they are executed.

-t Touch target files. Set the target file date to the date of the latest
dependency file rather than executing the build commands.
7-10 MicroStation MDL Programmer’s Reference Guide

Building Applications
Compiling an Application Command Table
Compiling an Application Command Table
MicroStation lets an application define its own command language in a command
table. The keywords in the command language and the command syntax (the order of
words in commands) are determined by the contents of the command table resource.
Commands are parsed word by word.

The command table resource is created with the MicroStation resource compiler,
rcomp. Input to rcomp is a resource source (.r) file. The syntax of this file is modeled
after the C programming language. For more information on the MicroStation resource
compiler, see “Compiling Resources” on page 7-19.

The first step in creating an application command table is to describe the command
syntax in an ASCII file. The command table source file can be built with any
convenient text editor. Within this file, a system-defined C language structure called
Table defines a hierarchy of command word tables. This hierarchy defines the words
in the application’s command language and command syntax.

The first word of any application command must appear in the root command word
table, the first command word table in the hierarchy. The command word table used
for subsequent words in the application’s command will be obtained from the root
table’s sub command word table. The appropriate subtable is determined by the
options specified for the matching line in the current command word table. Each
successive word in an application’s command will be obtained further down the
hierarchy in this manner.

The command word source file also contains the following:

• Include (#include) statements to include C header files.

• Comments, which the rcomp utility ignores.

• An optional version specified in a C #pragma statement that specifies
the file version.

-I Specify the include (*.mki) file path.

-S
(PC only)

Specify a swap file path. When specified, bmake will swap as much of
itself out of memory as possible, thus allowing more space for the user
application. Syntax is:
-S<temp file path>
For example: bmake -Sc:\temp dlogdemo. If the BMAKE_OPT
environment variable is set to -S<temp file path>, this option will be
set every time bmake is run.

option description
MicroStation MDL Programmer’s Reference Guide 7-11

Building Applications
Compiling an Application Command Table
• An optional identity or Ident string specified in a C #pragma statement
for the compiler to place at the beginning of the resource file.

• Table variable declarations that delineate the beginning of command
word tables.

• Initialization statements for each command word contained in the
command word table.

Example
A complete listing of basiccmd.r, the command table for basic.ma, can be found in “A
Complete Example” on page 18-1.

The Table resource declaration defines a command word table. The syntax is as
follows:

Table <tableidentifier>=
{

(initialization statements go here, one per command word)
};

<tableidentifier> represents an 8-bit unsigned integer.

Typically, #define statements set up constants for the tableids as follows:

#define CT_MAINTABLE 1 /* root command word table */
Table CT_MAINTABLE=
{

(initialization statements)
};

The main (or root) command word table must be assigned a <tableidentifier> of 1.
The main command word table contains an entry for each keyword that can be used as
the first word in a command for the application.

Example
The command table for the basic example, basiccmd.r, is very simplistic:

42 #define CT_NONE 0
43 #define CT_BASIC 1

...
49 Table CT_BASIC=
50 {
51 {1, CT_NONE, INPUT, NONE, "OPENMODAL"},
52 };
7-12 MicroStation MDL Programmer’s Reference Guide

Building Applications
Compiling an Application Command Table
Each valid command word in the table has one initialization statement. The format for
each initialization statement is as follows:

{<number>, <subtableidentifier> (or zero if no subtable),
 <commandclass>, <options>, "<commandword>"},

The number field constructs the command number for the entire command. The range
is 1 to 255 for the first three words in a command and 1 to 15 for the last two words if
the command has five words. A command can be no longer than five words.

The commandword field contains the word that the parser attempts to match. Case is not
significant, and the quotation mark delimiters are required. Space, ‘/’ and ‘=’ characters
are not allowed.

In the main table, each number must be in the 1-255 range. In a subtable of the main
table, each number must also be in the 1-255 range.

When a word in a command is parsed against a command word table, a match is found
if one of the following conditions exists:

• Every letter in the test word matches the corresponding letter in a
command word in the table and a match exists for no other words.

• The test word is a command word.

Thus, according to the command word table below, the TE key-in matches 3 and the
LINE key-in matches 1. However, the LI key-in does not match (is ambiguous).

Table CT_ELEMENTS=
{ /* Subtable CommandClass Options CommandWord */
{ 1, CT_NONE, INHERIT, NONE, "LINE" },
{ 2, CT_NONE, INHERIT, NONE, "CURVE" },
{ 3, CT_NONE, INHERIT, NONE, "TEXT" },
{ 4, CT_NONE, INHERIT, NONE, "LINESTRING" }

};

The intelligence is added to a command word table with the <subtableidentifier>,
<commandclass> and <options> fields in the initialization statement.

The <subtableidentifier> field specifies the command word subtable for the next
word in the command. (Parsing always starts with the root command word table).

✍ The <commandclass> field stores information about the command class in
the command word table. MicroStation or an application program can
MicroStation MDL Programmer’s Reference Guide 7-13

Building Applications
Compiling an Application Command Table
retrieve and use this information. The classes and their corresponding
values are as follows:

The possible values are 1 to 63. The first 48 classes are reserved for MicroStation, and
the last 15 are available for application use. A command’s class is determined by the
class specified in the last matched word for which a class is defined. In the above
example, the DELETE ELEMENT command is in class MANIPULATION (7), but the
DELETE CELL command is in class CELLLIB (13).

The <options> field on the initialization statement is a bit field, where several binary
flags are joined with the logical OR operator. The following flags can be joined with
OR:

DEF | REQ | TRY | CMDSTR (n)

The DEF (default) flag specifies the default value of the word for a particular table. For
example, consider the following command word table hierarchy:

Table CT_MAIN=
{

{1, CT_DELETE, MANIPULATION, NONE, "DELETE"},
{2, CT_ELEMENTS, PLACEMENT, REQ, "PLACE"},
{3, CT_ACTIVE, PARAMETERS, REQ, "ACTIVE"}

};

Table CT_ELEMENTS=
{

Class Value Class Value

PLACEMENT 1 COMPRESS 15

VIEWING 2 REFERENCE 16

FENCE 3 DATABASE 17

PARAMETERS 4 DIMENSION 18

LOCKS 5 LOCATE 19

USERCOMMAND 6 TUTORIAL 20

MANIPULATION 7 WORKINGSET 21

SHOW 8 ELEMENTLIST 22

PLOT 9 UNDO 23

NEWFILE 10 SUBPROCESS 24

MEASURE 11 VIEWPARAM 25

INPUT 12 VIEWIMMEDIATE 26

CELLLIB 13 WINDOWMAN 27

FILEDESIGN 14 DIALOGMAN 28
7-14 MicroStation MDL Programmer’s Reference Guide

Building Applications
Compiling an Application Command Table
{1, CT_NONE, INHERIT, NONE, "LINE"},
{2, CT_NONE, INHERIT, NONE, "CURVE"},
{3, CT_NONE, INHERIT, NONE, "TEXT"},
{4, CT_NONE, INHERIT, NONE, "LINESTRING"},
{5, CT_NONE, INHERIT, NONE, "POINT"}

};

Table CT_DELETE=
{

{1, CT_NONE, INHERIT, DEF, "ELEMENT"},
{2, CT_NONE, INHERIT, NONE, "VERTEX"},
{3, CT_NONE, INHERIT, NONE, "PARTIAL"},
{4, CT_NONE, CELLLIB, NONE, "CELL"}

};

Table CT_ACTIVE=
{

{1, CT_COLORS, INHERIT, TRY, "COLOR"},
{2, CT_NONE, INHERIT, NONE, "WEIGHT"},
{3, CT_NONE, INHERIT, NONE, "STYLE"}

};

Table CT_COLORS=
{

{1, CT_NONE, INHERIT, NONE, "WHITE"},
{2, CT_NONE, INHERIT, NONE, "BLUE"},
{3, CT_NONE, INHERIT, NONE, "GREEN"},
{4, CT_NONE, INHERIT, NONE, "RED"},
{5, CT_NONE, INHERIT, NONE, "YELLOW"},
{6, CT_NONE, INHERIT, NONE, "VIOLET"},
{7, CT_NONE, INHERIT, NONE, "ORANGE"}

};

When the user keys in DELETE, the parser extracts the default from the next table. In
this case, the DELETE ELEMENT command is generated. If the CT_DELETE subtable
has no entries marked as DEF, the DELETE command is generated.

The REQ (required) flag tells the parser that a selection from the specified subtable is
required. Thus, if the user keys in PLACE in this example, an error (insufficient
arguments) is returned. The REQ flag is appropriate when a subtable is also specified in
the <subtableidentifier> field.

The TRY (try parse) flag tells the parser to accept a value from a command word table
if there is a match, but do not generate an error if no match exists. If there is no match,
the parser saves the non-matching portion for application parsing. The parser needs
the TRY flag to accept ACTIVE COLOR RED or ACTIVE COLOR 4 in the above
example. Without this option, an entry that does not match a command in the subtable
results in an error. The TRY flag is needed only when a subtable is also specified in the
<subtableidentifier> field.
MicroStation MDL Programmer’s Reference Guide 7-15

Building Applications
Syntax
The CMDSTR (command string) macro associates a command string in the application’s
registered command number, MessageList, with the command in the command word
table. The message in the command number, MessageList, indicated by CMDSTR (n)
displays every time the command is executed. For more information on registering an
application’s command number, MessageList, see the mdlState_registerStringIds
function. For a description of MessageLists, see “Compiling Resources” on page 7-19.

If a string is successfully parsed with two different command tables, MicroStation uses
the result that parsed the most keywords. For example, if the user keys in PLACE LINE
MYWAY and an MDL application has a parse table that matches all three keywords,
MicroStation generates the command for the application.

Syntax

To execute rcomp directly:

Key-in: RCOMP [-H] INPUT-FILE

The output command table resource file has the same name as the input file, with the
.rsc extension. If the -h command line option is specified, an output file with the
generated command numbers is produced in the format of a C include file. The file
also has the same name as the input file, with the .h extension. This .h file is a
programming aid that defines a mnemonic for each command and its corresponding
command number.

Example
The command table entries in basic.mke read:

42 $(genSrc)basiccmd.h : $(BaseDir)basiccmd.r
43 $(o)basiccmd.rsc : $(BaseDir)basiccmd.r

These call the .r.h: and .r.rsc: rules in mdl.mki, which subsequently call rcomp.

If rcomp detects an error while processing the input file, the line containing the error
is reported. One possible error is:

• Unrecognized constant: a constant provided on a resourceclass
statement or within the body of a command word table declaration
was not defined (#define) earlier in the program.

The command numbers generated by rcomp (using the -h option) are
32-bit integers constructed as follows:

• The number in the initialization statement for the word matching the
first word goes in the command’s high byte.
7-16 MicroStation MDL Programmer’s Reference Guide

Building Applications
Generating Resource Files from C Type Definitions
• If there is a second word and a <subtableidentifier>, the number
for the matching word goes in the second highest byte. Similarly, the
match for the third word goes in the third-highest byte. The matching
numbers go in the high four bits and low four bits of the low byte, for
the fourth and fifth words.

When MicroStation successfully parses a user key-in, it generates a command number
in the same manner. MicroStation creates a queue element that contains the command
number and task ID of the application associated with the command table. When MDL
receives a CMDNUM queue element for an MDL application, it uses the task ID to
determine the application to execute the command. It then scans the list of command
numbers associated with the application to determine the function to call.

MDL functions are linked with function numbers at compile time. The cmdNumber
keyword associates a function with a command number. The cmdNumber keyword
designates a list of function numbers handled by the function. Typically, the command
numbers come from a .h file generated by rcomp. For example, assume that the
generated .h file contains the following lines:

#define CMD_CHANGE 0x01000000
#define CMD_CHANGE_TEXT 0x01010000
#define CMD_CHANGE_TEXT_SINGLE 0x01010100

The source file would include the .h file and a declaration with the following format:

changeTextSingle(char *unParsedP)
cmdNumber CMD_CHANGE, CMD_CHANGE_TEXT, CMD_CHANGE_TEXT_SINGLE
{

...
}

Generating Resource Files from C Type Definitions
The rsctype utility compiles structure and union declarations (usually stored in a .mt
file) and generates a resource source (.r) file containing structure and union definitions.
rcomp compiles the source file and generates the resource file. The built-in functions
described in this section can use the resource file.

MDL provides the C expression built-in functions to evaluate expressions at run-time. If
the expressions contain references to fields contained in structures or unions, the
corresponding structures and unions must be defined in a resource file.

A source program to be processed by rsctype uses C syntax for defining structures and
unions. However, it cannot contain declarations that allocate space and it cannot
contain executable statements.
MicroStation MDL Programmer’s Reference Guide 7-17

Building Applications
Predefined macros
The format of an rsctype program is typically as follows:

• A list of header files that contain the desired structure and union
definitions.

• Structure and union definitions included in-line.

• publishStructures statements specifying structures to be defined in
the resource source file.

The syntax for a publishStructures statement, shown in the following example, is
identical to the syntax for a function call.

publishStructures(structureName[, structureName, ...])

Any number of structure and union names can be included in the list of names.

Example
This is the .mt file for basic.ma:

 30#include "basic.h"
 31publishStructures(basicglobals);

The larger and more complex the MDL application, the more #includes and additional
structures that the .mt file will contain.

Predefined macros
rsctype provides built-in macros to be used in conditional compilations. It provides all
definitions provided with mcomp. It also defines the type_resource_generator
variable.

rsctype, like mcomp, uses the MDL_COMP environment variable to obtain arguments.
The string specified by MDL_COMP is prepended to the command line arguments before
the arguments are processed. Any combination of command line arguments can be
specified with the MDL_COMP environment variable. The options must be separated by
blanks.

MDL_COMP generally specifies include directories. The following MDL_COMP definitions
specify two include directories:

export MDL_COMP=-i$MS/mdl/include/ -I/usr2/myhdrs (UNIX)
set MDL_COMP=-i$(MS)\mdl\include -Ic:\myhdrs (DOS)
7-18 MicroStation MDL Programmer’s Reference Guide

Building Applications
Syntax
Syntax
The command line syntax for rsctype is as follows:

rsctype [-flag, -flag,...] input-file

-flag can be one of the following:

If only the file prefix is specified for the input filename, rsctype appends .mt to the
name.

Example
The type resource entries in basic.mke read:

48 $(o)basictyp.r : $(BaseDir)basictyp.mt $(BaseDir)basic.h
49 $(o)basictyp.rsc : $(o)basictyp.r $(BaseDir)basic.h

These call the .mt.r: and .r.rsc rules in mdl.mki, which subsequently call rsctype
and rcomp, respectively.

Compiling Resources
As described earlier in “Compiling an Application Command Table,” the resource
compiler rcomp generates resources from ASCII source files, storing them in resource
files to be used by MDL applications. Resource compiler source files are usually
denoted by the file extension, .r. The default extension for generated output files is
.rsc.

flag description

-d<name>=<value> Define name with value value as it is defined by a define
statement in the source file. This option does not require
=value.

-p Display preprocessor output.

-v Verbose: show the compiler’s progress.

-o<filename> Specify the output filename. If this option is not specified,
the output filename is created when .r is appended to the
input filename prefix.

-i<dir> Add the specified directory to the list of directories
searched for include files. The MDL compiler supports up
to 40 include directories.
MicroStation MDL Programmer’s Reference Guide 7-19

Building Applications
Command line syntax
Because of the wide variety of data that can be stored in a resource file, this section
will not describe the construction of resource source files. For information on doing so,
refer to the “Resources” chapter.

Example
A listing of basic.r, the resource file for basic.ma, can be found in “A Complete
Example” on page 18-1.

Command line syntax
rcomp [options] source_filename

The following options are supported:

flag description

-d<name>=<value> Define name with the value value as if it is defined by a
#define statement. This option does not require =value.

-f<format> Specify the output format. Options include clipper, hp700,
mac, pc, sparc and 4x, which specifies 4.x compatibility.

-h Generate a C header file of CMD_ defines when compiling
command tables.

-ho<filename> Generate a C header file of CMD_ defines when compiling
command tables and allow the filename to be specified.

-i<dir> Search this directory for include files.

-o<filename> Specify explicit output filename. If this option is not
specified, the output filename is determined from the input
filename. The default extension for output files is .rsc.

-p Display preprocessed output.

-pi Trace include file history. If this flag is defined, then every
time the compiler encounters an #include preprocessor
directive, it displays both the name of the file that contains
the #include statement, and the name of the file to be
included.

-r Generate a definition resource for each resourceclass.

-t<directory> Directory to search for #pragma translate resources. If
not specified, current directory is searched.

-v Verbose: show progress of the compiler.
7-20 MicroStation MDL Programmer’s Reference Guide

Building Applications
Compiling MDL Applications
The command line switches and input filename can be provided in any order.
Response files can be used to specify command line switches as well as the input
filename to the compiler as the following example shows:

RCOMP -ddebug @args.txt

The contents of args.txt are as follows:

“-v -ic:\mydir\myhdr.-h input.r” (MS-DOS)
“-v -i/usr/mydir/myhdr.-h input.r” (UNIX)

Example
The resource entry in basicrsc.mki reads:

22 $(rscObjects)basic.rsc : $(BaseDir)basic.r $(langSpec)basictxt.h \
23 $(privateInc)basic.h

This calls the .r.rsc: rule in mdl.mki, which subsequently calls rcomp.

Compiling MDL Applications
The mcomp utility compiles MDL source code (usually stored in a .mc file) and
generates an MDL output (.mo) file that is ready to be linked using mlink.

The command line syntax for the MDL compiler is as follows:

mcomp [-flag, -flag,...] input-file

-flags can be one of the following:

flag description

-b Warn if the input file contains a reference to a built-in function
that hasn’t been declared.

-c Compile only: on UNIX machines, the compiler automatically
invokes the MDL linker if this flag is not specified and the
source file compiles successfully. If this flag is specified, the
linker is never invoked automatically.
On the PC, the linker is not invoked automatically.

-d<name>=<value> Define name with the value value as if it was defined by a
#define statement. This option does not require value.

-g Dump all debugging information to the output file.
MicroStation MDL Programmer’s Reference Guide 7-21

Building Applications
Compiling MDL Applications
If only the file prefix is specified for the input filename, the MDL compiler appends
.mc to the name.

mcomp, like rsctype, uses the MDL_COMP environment variable to obtain arguments.
The string specified by MDL_COMP is prepended to the command line arguments before
the arguments are processed. Any combination of command line arguments can be
specified with the MDL_COMP environment variable. The options must be separated by
blanks.

MDL_COMP generally specifies include directories. The following MDL_COMP definitions
specify two include directories:

export MDL_COMP=-i$MS/mdl/include/ -i/usr2/myhdrs (UNIX)
set MDL_COMP=-i$(MS)\mdl\include -ic:\myhdrs (DOS)

Under MS-DOS, the command line is restricted to 128 bytes. To use a longer command
line, use command line indirection as follows: place the command line in a file and run
mcomp with the command: mcomp @<filename>.

Example
The MDL source entry in basic.mke reads:

53 $(o)basic.mo : $(BaseDir)basic.mc $(BaseDir)basic.h

This calls the .mc.mo: rule in mdl.mki which subsequently call mcomp.

-i<dir> Add the specified directory to the list of directories searched for
include files. The MDL compiler supports up to 40 include
directories.

-o<filename> Specify the output filename. If this option is not specified, the
output filename is created when .mo is appended to the input
filename prefix.

-p Display preprocessor output.

-pi Trace include file history. If this flag is defined, then every time
the compiler encounters a #include preprocessor directive, it
displays both the name of the file that contains the #include
statement, and the name of the file to be included.

-t<directory> Directory to search for #pragma translate resources. If not
specified, current directory is searched.

-v Verbose: show the compiler’s progress.

flag description
7-22 MicroStation MDL Programmer’s Reference Guide

Building Applications
Compiling MDL Applications
mcomp provides built-in macros to be used in conditional compilations. The MDL
compiler’s built-in definitions are the same as the result of the following preprocessor
directive:

#define <variable-name> 1

The built-in macros for mcomp (and rcomp and rsctype) are:

mdl is always defined and includes or excludes code based on whether mcomp or
another compiler is being used.

The macro __LINE__ expands to the line number of the file that contains the statement.
__FILE__ expands to a string that contains the name of the file that contains the macro.
__DATE__ expands to a string that contains the date the file is compiled. __TIME__
expands to a string that contains the time the file was compiled. The statement:

 printf ("line number %d in %s, compiled %s at %s\n",
 __LINE__, __FILE__, __DATE__, __TIME__);

prints:

 line number 4 in sample.mc, compiled Oct 6 1993 at 13:10:42

platform macro(s)

MS-DOS mdl, dos, pm386

Macintosh mdl, mc68000, macintosh

Vax mdl, vax

Clipper mdl, unix, ip32, clipper

Sun OS mdl, unix, sparc

Solaris mdl, unix, sparc, SUNSVR4

HP 700 mdl, unix, hp700

Windows NT mdl, winNT

DEC Alpha mdl, winNT, _ALPHA_

Silicon Graphics mdl, unix, SGIMIPS

IBM RS-6000 mdl, rs6000
MicroStation MDL Programmer’s Reference Guide 7-23

Building Applications
Using the MDL Librarian
Using the MDL Librarian
The MDL librarian, mlib, is used to combine multiple MDL object (.mo) files into a
larger, linkable, MDL library (.ml) file. Use of this utility is optional, and many MDL
applications, including basic.ma, are built without using mlib.

The command line syntax for the MDL librarian is as follows:

MLIB COMMAND[MODIFIERS] LIBRARY-FILE [INPUT-FILES]

The commands are as follows:

The modifiers are:

The following command requests a verbose table of contents of the mathlib.m library
file:

MLIB -TV MATHLIB.ML

mlib stores any type of file in a library file. If the file being stored is an MDL object file,
mlib extracts information from the file’s symbol table and stores the information in the
library file’s header. This activity enables mlink to process the library faster when
deciding which object images from the library file should be used.

Linking MDL Applications
The MDL linker (mlink) combines MDL object (.mo) or MDL library (.ml) files into a
resource (.mp) file called a program file. The program file can be used as an
application file, or it can be combined with other resource files. This combination
creates an application file that contains all resources that the application requires.

command description

a Add the files to the library file.

d Delete the files from the library file.

t Display a table of contents.

x Extract the files from the library.

modifier description

v Verbose.

c Do not display a message if the library file
is created.
7-24 MicroStation MDL Programmer’s Reference Guide

Building Applications
Linking MDL Applications
If the program file will be merged into an application file with other program files, a
task ID must be specified in the link step. Each program in the application file must
have a unique task ID.

mlink accepts MDL object files and MDL library files as input. When processing a
library file, mlink includes a file from the library only if the file satisfies any outstanding
unresolved references. mlink performs multiple passes of a library file, stopping when
a pass does not include any more files from the library.

The command line syntax for mlink is as follows:

MLINK [-FLAG, -FLAG,] INPUT-FILES

The -flag parameter can have the following values. (A space must separate the option
and flag value, and a hyphen ‘-’ must precede the flag value.)

flag description

-a[name] Designate the name of the application file created by mlink. If
this name is not specified, mlink creates the name by
appending .ma to the prefix of the first input filename.

-cs[options] Control usage of common stack. Valid combinations are -cs, -
cson and -csoff. By default, the common stack is used.

-g<options> Control the amount of debugging information added to the
output file. If -g or -gd is specified, mlink provides all
information the MDL debugger can use. If -gn is used or if the -
g flag is omitted, mlink provides only enough information for
MDL to generate a useful message if the MDL application
causes a fault at runtime. If -go is specified, all debugging
information is omitted.

-m<options> Request a load map and specify the options. With l, the labels
will be sorted by location. With n, the labels will be sorted by
name.

-s[stack-size] Request a specific stack size in bytes. If no stack size is
requested, mlink assigns a stack size. It displays the value after
linking the application. If the default stack size is too small, a
stack overflow occurs at runtime, causing MDL to abort the
application and display a message indicating that the stack
overflowed. If this happens, link the application specifying a
larger stack size. If the default stack size is too large, memory is
wasted.

-t[taskID] Specify a task ID to be associated with the application. The task
ID must have 15 bytes or less. mlink converts the task ID to
upper-case.

-v Verbose: show mlink’s progress.
MicroStation MDL Programmer’s Reference Guide 7-25

Building Applications
Linking MDL Applications
Prior to version 5 of MicroStation, every MDL application had its own stack. This
method wasted memory because different applications rarely used the stack at the
same time. Therefore, the concept of a common stack was introduced in version 5,
allowing nearly all applications to use the same stack. An application can use the
common stack unless it calls the function mdlInput_waitForMessage. When an
application using the common stack calls mdlInput_waitForMessage, MicroStation
aborts the application and displays the message “MDL detected invalid use of
suspend.”

An application created with the 4.0 version of mlink gets its own stack. This allows 4.0
applications to be protected from any incompatibilities introduced by the use of the
common stack.

An application created with the 5.0 version of mlink uses the common stack unless -
csoff is specified in the link step.

If a program file does not have a specified task ID, the task ID is generated from the
application filename when the program is loaded. See “Running MDL Applications” on
page 8-1, for more information.

Under DOS, the command line is restricted to 128 bytes. To use a longer command
line, use command line indirection. Place the command line in a file. Run mlink with
the command: mlink @<filename>.

Example
The link portion of basic.mke reads:

 57$(o)basic.mp : $(basicObjs)
 58 $(msg)
 59 > $(o)make.opt
 60 $(linkOpts)
 61 -a$@
 62 $(basicObjs)
 63 <
 64 $(linkCmd) @$(o)make.opt
 65 ~time

This rule calls the linkcmd macro which is mapped to mlink.
7-26 MicroStation MDL Programmer’s Reference Guide

Building Applications
Linking MDL Applications
Resource Librarian
The resource librarian is used to merge resource files that have been created from a
variety of sources. Its primary use is to build the final application (.ma) form of an
MDL project. Because its output format is a standard compiled resource file, rlib can
also be used to merge .rsc files. rlib can accept the following types of files as input:

• Files generated by the resource compiler (.rsc files).

• MDL program (.mp or .ma) files.

• Files created by MDL applications using the mdlResource_createFile
function.

The following command line syntax is used for the resource librarian:

RLIB [OPTIONS] FILE 1, FILE 2 ... FILE N

If a file is provided without an extension, .rsc is assumed. .rsc files are broken down
and merged together according to resourceclass. They are then written to the output
file.

The following options are supported:

Input files and command line switches can be provided in any order on the command
line. Response files can also be used as they are with the resource compiler.

✍ When adding customized resources into ustation.rsc with rlib, the -f4x
option should be used to ensure that ustation.rsc remains in 4.x resource
file format.

flag description

-f<format> Specify the output format. Options include clipper, hp700,
mac, pc, sparc and 4x, which specifies 4.x compatibility.

-o<filename> Specify the output filename. If this option is not specified, the
output filename is determined from the first input filename.
The default extension for output files is .rsc. If you are building
the final form of an MDL application, be sure to specify .ma.

-r<resourceID> Restrict the librarian’s operation to a particular resourceID.

-s"string" Specify the output file’s identification string.

-t<class> Restrict the librarian’s operation to a particular resourceclass.
class is the resourceclass identifier as specified in the
resourceclass statement. It can be specified in hex, decimal
or character constant form. For example, -t'Msgs' and -
t0x4d736773 are equivalent.

-v Verbose: show progress of the librarian.
MicroStation MDL Programmer’s Reference Guide 7-27

Building Applications
Linking MDL Applications
Example
The resource library portion of basicrsc.mki reads:

 25$(mdlapps)basic.ma : $(basicRscs)
 26 $(msg)
 27 > $(rscObjects)make.opt
 28 -o$@
 29 $(basicRscs)
 30 <
 31 $(rscLibCmd) @$(rscObjects)make.opt
 32 ~time

This rule calls the rscLibCmd macro which is mapped to rlib.
7-28 MicroStation MDL Programmer’s Reference Guide

8 Running MDL Applications
This section describes how an MDL program is loaded, how its
commands are started, and how it is unloaded.

MDL distinguishes between programs, application files and tasks.
These terms are all defined in “MDL Applications” on page 1-5.
Relationships Between Terms
The relationship between the terms can be summarized as follows:

• MDL loads and unloads programs.

• A program is loaded from an application file. An application file
contains one or more programs.

• When a program is loaded, MDL creates a task.

• When a program is unloaded, MDL destroys the task.

Loading an MDL Program
All methods of loading an MDL program allow an application filename and task ID to
be specified, but only the application filename is required.

When the application filename is specified, only the root of the filename is required,
although the full filename can be provided. When trying to locate the file, MDL looks
for a file with extension .ma or .rsc. It looks for the file in the paths specified by the
environment variables MS_EXE and MS_MDL. If example is specified as the root of the
application filename, MDL looks for the files in the following order:

1. example.ma in the directories specified by MS_EXE.

2. example.ma in the directories specified by MS_MDL.

3. example.rsc in the directories specified by MS_EXE.

4. example.rsc in the directories specified by MS_MDL.

If the task ID is not specified, MDL strips the file extension and path from the full file
specification to derive the root filename. It converts the root filename to upper-case
MicroStation MDL Programmer’s Reference Guide 8-1

Running MDL Applications
Loading an MDL Program
and uses the result as the task ID. Once MicroStation has the task ID, it uses it as
follows, regardless of whether the task ID is generated or specified. MicroStation tries
to load the program that has the required task ID. If the application file does not
contain a program with that task ID, MicroStation then tries to load a program that does
not have a constant task ID. If it finds one, it loads the program and assigns the
task ID.

An MDL program can be loaded by one of the following:

• An MDL LOAD <name> command.

• Selecting Load from the MDL Applications menu.

• Another MDL task calling the built-in function
mdlSystem_loadMdlProgram.

• MicroStation initialization. MicroStation loads programs specified by
the MDL environment variables MS_INITAPPS and MS_DGNAPPS.

• An application startup element (type 66) in the design file.

The syntax for the MDL LOAD command is as follows:

MDL LOAD [DEBUG | NODEBUG] <application filename>[,task ID] [parameters]

Any number of parameters can be specified. The parameters are separated by blanks
and supplied to the MDL task started by the MDL LOAD command.

Typically, the simplest form of the MDL LOAD key-in is used. For example, to load the
example application, key in MDL LOAD <example>.

The environment variables MS_DGNAPPS and MS_INITAPPS specify programs to load
during MicroStation initialization. Each environment variable can specify a list of
programs. If a list specifies more than one program, the specifications must be
separated by semicolons. The format of a program specification is as follows:

application-file-name[,task ID][/d]

Typically, only the application filename is used. /d tells MDL to activate the debugger
after loading the program. An example of a specification is as follows:

MS_DGNAPPS=calculat;qdim;myapps,macros/d

MS_INITAPPS specifies MDL programs to be loaded before MicroStation opens the
design file or enters graphics mode. These programs are typically “front-end” programs
used to select or manage files. See “Using MS_INITAPPS Applications” on page 8-5 for
more information on these programs.
8-2 MicroStation MDL Programmer’s Reference Guide

Running MDL Applications
Unloading an MDL Program
MS_DGNAPPS specifies MDL programs to be loaded immediately before MicroStation
opens the first design file. Use MS_DGNAPPS to specify MDL programs that you want
loaded automatically when you use MicroStation.

An application startup element in the design file specifies a program to be loaded
when the design file is loaded. When MicroStation opens a design file, it searches for
application startup elements when it looks for the TCB and other control elements. If it
finds a startup element, it queues an MDL LOAD command that loads the program
specified in the element with any command line arguments stored there. The MDL
LOAD commands queued this way are processed immediately after the file displays.
See mdlSystem_createStartupElement for more information.

After loading an MDL program, MicroStation tries to execute the task’s main function.
The main function is optional and is needed only if the task needs to perform
initialization. If the task does not contain a main function or if a main function does not
explicitly call an exit function, the task remains resident waiting to process commands.
If the task exists when the load request occurs and the task has a reload function, MDL
calls the reload function. (See userSystem_reloadProgram for more information on
reload functions).

The arguments to main are similar to those for standard C. argc contains a count of the
number of arguments. argv is an array of pointers to the arguments. argv[0] points to
the name of the MDL application file. argv[1] points to a string specifying the source of
the load request. If the program is loaded as the result of an environment variable
(such as MS_INITAPPS), argv[1] points to the name of the environment variable. If the
program is loaded as the result of an MDL LOAD command or from MDL Applications
menu, argv[1] points to the string “USER”. If the program is loaded as the result of an
mdlSystem_loadMdlProgram call, argv[1] points to the string “MDLTASK”. If the program
is loaded as the result of an application startup element, argv[1] points to the string
“STARTUP”. The remaining arguments are provided as part of the load request.

Unloading an MDL Program
An MDL program can be unloaded by one of the following:

• An MDL UNLOAD command.

• A call to exit or mdlSystem_exit from the MDL task.

• MicroStation shutting down.

• A fatal error in the MDL program.

• A call to mdlSystem_unloadMdlProgram from an MDL task.

• The MDL debugger QUIT command.
MicroStation MDL Programmer’s Reference Guide 8-3

Running MDL Applications
Using Commands in MDL Tasks
When unloading an MDL program, MicroStation first calls the task’s unload user hook if
the task has specified one. (See userSystem_unloadProgram for more information.)
The user hook can reject the unload request. If the unload request is not rejected,
MicroStation cleans up most of the task’s resources such as open files and allocated
memory. There are specific items that are not cleaned up: element descriptors and
string lists. An MDL program must specifically free all of the string lists and element
descriptors created for it. Use the mdlElmdscr_freeAll function to free element
descriptors and the mdlStringList_destroy function to free memory allocated
through string list functions.

Once all memory is cleaned, MicroStation removes the task from memory. Finally, if
the unloaded program was started by another MDL task, the other task is notified.

The syntax for the unload command is as follows:

MDL UNLOAD <task ID>

Using Commands in MDL Tasks
This section describes how to declare a function as an MDL command and how to start
the command. See “State Control Functions” for information on command organization.

When a function is declared, it can be designated as a command. To designate a
function as a command, specify that the function’s name is available as a command
name, specify a list of command numbers to be associated with the function, or both.

To specify that a function’s name is available as a command name, specify cmdName
before the function name. To associate command numbers with a function, specify
cmdNumber and a list of command numbers after the argument declarations for the
function. The following are examples of the syntax for command declarations. For
each example, the executable portion of the function would follow the function
declaration, but is not shown here. Also, CMD_TEST1 and CMD_TEST2 are macros defined
as integer constants.

cmdName void testCommand(char *unparsedP)

void testCommand () cmdNumber CMD_TEST1, CMD_TEST2

cmdName testCommand(char *unparsedP) cmdNumber CMD_TEST1

If a function’s name is available as a command name, the command can be started with
an MDL COMMAND key-in. The syntax for the MDL COMMAND key-in is:

MDL COMMAND [task ID,] <command name> <parameter>
8-4 MicroStation MDL Programmer’s Reference Guide

Running MDL Applications
Aborting an MDL Task
If multiple tasks are loaded and these tasks have commands with the same name, task
ID gets the command from the intended task. Otherwise, only command name is
required.

If the task ID and command name are specified, a comma must separate them.
Otherwise, MDL interprets the first string as the command name and the second string
as a parameter. The key-in MDL COMMAND TASK,TESTCOMMAND attempts to
start the TESTCOMMAND (that is, execute the testCommand function) in the TASK.
The MDL COMMAND TESTCOMMAND PARAMS key-in starts the CMD command,
supplying a pointer to PARAMS as the argument unparsedP.

If a task has a command table loaded and the task’s commands have command
numbers associated with them, the task’s commands can be accessed with the
commands specified in the command table. When this method is used, the key-in
consists entirely of keywords specified in the application command table. MDL
COMMAND should not be part of the key-in. See “Compiling an Application
Command Table” on page 7-11, for more information.

Aborting an MDL Task
While a task is running, it can be aborted by pressing <Ctrl-C> or <Ctrl-Break>.
Pressing these keys lets you regain control from a hung MDL task. A task can inhibit
this capability.

See mdlSystem_userAbortEnable, mdlSystem_extendedAbortEnable and
mdlSystem_extendedAbortRequested for more information.

Using MS_INITAPPS Applications
Many times an MDL application may need to present a controlled environment to the
user upon startup. The application uses MicroStation’s graphical user interface to let the
user select a project or other preferences relating to the work session. Alternatively, an
MDL application can operate MicroStation in a batch mode, where no graphics appear
on the screen and no user interaction occurs. The MS_INITAPPS environment variable
lets MicroStation accomplish both of these objectives.

As described above, programs specified with the MS_INITAPPS environment variable
are started when MicroStation is activated. These programs are started after
MicroStation has initialized internal variables for MDL and other necessary components
and before MicroStation has entered graphics mode. The MDL_INITAPPS programs
are started in the order specified in the environment variable. While a list of programs
are allowed as initial applications, only one is needed.
MicroStation MDL Programmer’s Reference Guide 8-5

Running MDL Applications
Using MS_INITAPPS Applications
The MS_INITAPPS program’s main function is called with argv[1] pointing to
MS_INITAPPS. The program uses this method of calling the function to determine that it
is starting as an initial application, rather than being invoked by the user during normal
MicroStation operation. argv[2] ...argv[argc-1] are the command line arguments that
MicroStation was started with. Command line arguments that will be processed by the
MS_INITAPPS applications (and ignored by MicroStation) start with -i.

When the program is designed to provide a graphical front end to the user, the
application should follow these steps:

1. Put MicroStation in graphics mode by calling
mdlSystem_enterGraphics.

2. If the program will remain loaded while the user is working on the
design file, it should designate a function to be called when
MicroStation reloads it by calling mdlSystem_setFunction.

3. If the front-end program will let the user specify a design file on the
MicroStation command line, the program should examine the
command line arguments that started MicroStation and determine
whether a design file was specified. (The design file name will be the
only command line argument that does not start with the ‘-’ character).
If a design file was specified, the program should skip the remaining
steps and go directly to step 6, where MicroStation resumes control.

4. Perform any other initialization code, such as setting up other user
functions to be called in response to MicroStation events.

5. Display the application’s opening dialog box

6. Return control to MicroStation by returning from main.

The front-end program regains control when its dialog hook functions are called.
Presumably, the program will let the user select a design file to work on in
MicroStation. To accomplish the transition from the front-end program to MicroStation,
the program follows these steps:

1. Close its dialog box using the mdlWindow_close function.

2. Enter the user’s chosen design file using mdlSystem_newDesignFile.

3. Either exit entirely (using exit) or relinquish control to MicroStation
and wait for its reload program user function to be called. This
function tells the program to reopen its dialog box and once again
supervise interaction with the user.

If the MS_INITAPPS program exits without first opening a design file, MicroStation
terminates and returns to the operating system prompt.
8-6 MicroStation MDL Programmer’s Reference Guide

Running MDL Applications
Using MS_INITAPPS Applications
If, on the other hand, an MS_INITAPPS program is designed for batch processing in
MDL and will not use graphics or interact with the user, it should follow these steps:

1. Process the command line arguments that MicroStation is started with,
particularly the command line switches starting with -i.

2. Process the design file(s) as needed, using mdlSystem_newDesignFile
to load them.

3. Close the last design file using mdlSystem_closeDesignFile.

4. Call exit without a design file active to cause MicroStation to return to
the operating system prompt.
MicroStation MDL Programmer’s Reference Guide 8-7

8-8 MicroStation MDL Programmer’s Reference Guide

9 Debugging MDL Applications
The MDL debugger provides full source-level debugging capabilities
for MDL. In addition to providing standard debugging commands, it
also provides a C-expression evaluator.
Debugging
The first time a particular MDL application is to be debugged, its name must be
specified. To load an application and activate the MDL debugger from MicroStation,
key in the following, where <application> is the application name:

MDL LOAD DEBUG <APPLICATION>

To debug a previously loaded application, key in the following:

MDL DEBUG [APPLICATION]

The application name is an optional part of the command, and need only be specified
if the MDL application is unloaded, or another MDL application has been loaded since
you last debugged the first application. If the application is loaded with the MDL
LOAD command without the DEBUG modifier, MDL loads the symbol table before
activating the debugger. Otherwise, it only activates the debugger. MDL DEBUG
operates as an immediate command. It does not disrupt the state of the currently active
MicroStation command.

It is possible to have debugging information loaded for more than 1 application at a
time, but the debugger can only be in command mode for 1 application at a time. For
example, it is possible to load 3 MDL applications with debugging, but when the
debugger prompts for a command it is only possible to set breakpoints and display
values for the same application.

The mdlSystem_enterDebug function activates the debugger from an MDL application.
If the application does not have the debugging information loaded, MDL loads the
symbol table.
MicroStation MDL Programmer’s Reference Guide 9-1

Debugging MDL Applications
Debugger Input & Output
Debugger Input & Output
Input to the debugger is always entered at a MicroStation keyboard.

On the PC, the debugger’s output goes to standard out, and the debugger uses some
ANSI sequences in the output. The following are standard PC configurations for
debugging with MDL:

• Use two monitors but configure MicroStation for one. Start
MicroStation from the monitor MicroStation will not use. All debugger
output will go to the monitor where MicroStation was started.

• Run with standard out directed to an external terminal or terminal
emulator by redirecting MicroStation standard out from the command
line or by using the MicroStation environment variable MS_DBGOUT to
specify the output destination. For example, MS_DBGOUT=com1 writes
all output to com1. The debugger uses the keyboard even if the output
is redirected.

• Run with standard out displayed to MicroStation’s DOS window. This
is the default method. If you start MicroStation from a screen that
MicroStation uses and you do not specify MS_DBGOUT, then the
debugger’s output is displayed to MicroStation’s DOS window.

If the debugger uses a separate monitor or uses MicroStation’s DOS window, then
ANSI.SYS must be loaded for all of the debugger’s output to display correctly.

A debugger command can be entered when the mdb> prompt displays in the
debugger’s output area. Multiple commands can be entered on one line. These
commands must be separated by semicolons.

The debugger supports some command line editing on all platforms. Characters can be
entered anyplace in a command line that is being edited. Only insert mode is available.

On the PC, use the up and down arrow keys to move back through the command
history. To move through a command line, use the left and right arrow keys. Press
<Ctrl> and left arrow simultaneously to move back a word. Press <Ctrl> and the right
arrow simultaneously to move forward a word. Use the HOME key to move to the
beginning of the command line. Use the END key to move to the end of the command
line. Use the DELETE key to delete the character to the right of the cursor. Use the
BACKSPACE key to delete the character to the left of the cursor. Use <Esc> to clear
the command line.

On UNIX workstations, use <Ctrl-P> and <Ctrl-N> to move through the command
history. <Ctrl-B> moves the cursor left one character in the command line. <Ctrl-F>
moves the cursor right in the command line. <Ctrl-W> moves the cursor forward a
word. <Ctrl-A> moves the cursor to the start of the command line. <Ctrl-E> moves the
cursor to the end of the command line. Backspace deletes the character to the left of
9-2 MicroStation MDL Programmer’s Reference Guide

Debugging MDL Applications
How the Debugger Finds Source Code
the cursor. <Ctrl-D> deletes the character to the right of the cursor. Press the escape
key to clear the command line.

Use <Ctrl-R> to search through the debugger’s command history. Press <Ctrl-R>
followed by a string and <Enter> or <Return> to cause the debugger to search for a
specific string. <Ctrl-R> followed by <Enter> or <Return> causes the debugger to the
repeat the search using the same search string.

You can suspend the debugger’s output by pressing <Ctrl-S>; you can resume it by
pressing any other key. You can abort the debugger’s output using <Ctrl-C>.
<Ctrl-Break> also works on the PC. It overrides any other queued keystroke, so it may
work faster. When the output is aborted, MDL displays the prompt and waits for
another command.

On the PC, ! may be entered to run a DOS command. ! followed by a command runs
the command. ! without the command starts a DOS session. To return to the debugger
from DOS, key in EXIT. The setting in the External Programs field of the User
Preferences menu determines whether MicroStation frees memory before starting the
command.

How the Debugger Finds Source Code
When the MDL debugger displays source code, it reads the code from the source code
file. It looks for the source code file in the following places, in order:

1. When looking for the source file, the debugger first uses the name
exactly as it is specified in the compile command or makefile.

2. Next it looks for it in the current directory and in the directories
specified by MS_DBGSOURCE.

3. Finally, it looks in the directory specified that contains the .ma
application file.

Therefore, when make files specify the full directory path, MS_DBGSOURCE is not
needed. A typical setting for MS_DBGSOURCE is the following:

MS_DBGSOURCE = c:\ustation\mdl\examples\misc\;
c:\ustation\mdl\examples\plashape\
MicroStation MDL Programmer’s Reference Guide 9-3

Debugging MDL Applications
Using C Expressions With the Debugger
Preparing an Application for Use With the Debugger
To prepare an application for debugging, you must compile and link it with the -g
modifier. When the -g modifier is specified to the compiler, the compiler dumps all
debugging information to the object file. If the -g modifier is not specified, the
compiler dumps only the function names to the debugger portion of the object file.

When the -g modifier is specified to the linker, the linker copies all available
debugging information to the application file. If the -g modifier is not specified, the
linker copies only the function names and source filenames to the application’s
debugging information.

Using C Expressions With the Debugger
C expressions can also be entered at the debugger prompt. C expressions are used
with the MDL debugger to display and modify data in memory. The debugger accepts
C expressions, which include the standard operators, variables and structure
definitions. The debugger does not accept declarations or function calls for functions in
the MDL program. The debugger does accept function calls for MDL’s built-in
functions.

The debugger knows the type and location of variables. It knows the format of
structures referenced, so structure names can be used in casting. However, it does not
know of typedefs included in the source code.

The debugger evaluates the expression and performs any assignments included in the
statement. It then displays the result of the expression. If the result is an array, it
displays all members of the array. If the result is a structure, it displays all members of
the structure.

To display the elements of an array, enter only the array name. To display an array
address, request the address of the first element. For example, if the source code
contains the declaration char sampleArray[10];, the debugger command sampleArray
would display the values of all 10 array elements. The &sampleArray[0] command
would display the address of the array’s first element.

To display data with a format different from the format declared in the program, use a
cast or use the display command. For example, if the source code contains the
declaration int *pInteger and you want to view the second byte as a character, key in
*((char *)pInteger+1). You can cast a constant as the array’s address with an
expression like (long [10])0x12728. This command displays 10 longs starting at the
address 0x12728. The expression (long [10])&sampleArray[4] displays 10 longs
starting at the address of the fourth element in sampleArray.
9-4 MicroStation MDL Programmer’s Reference Guide

Debugging MDL Applications
Debugger Commands
When you enter a request, the debugger first tries to parse it as a command. If parsing
for a keyword does not find a match, the entire line is evaluated as a C expression. In
ambiguous cases, the first word is interpreted as a reserved keyword. To specify a C
expression that may be mistaken for a command, enclose the expression in
parentheses. For example, to display the value of a variable b, enter the command (b).
Entering b without parentheses displays a list of break points.

Debugger Commands
This section defines the debugger commands: ALIAS, BREAKPOINT, CALLS,
DISPLAY, DOWN, DUMP, EVALUATE, GO, HELP, MEMORY, QUIT, RECORD,
SCOPE, SET, STEP, SYMBOLS, TYPE and WATCH.

Debugger command syntax
Like MicroStation commands, debugger commands may be entered with only the
shortest string possible to uniquely identify it. For example, for the QUIT command,
any of the following commands are acceptable: Q, QU, QUI and QUIT.

The format of the commands is as follows:

command/modifier arguments[,arguments..]

Commands and modifiers are keywords. For any keyword, you need to enter only
enough characters to uniquely identify the keyword.

Modifiers are usually optional. A command may take more than one modifier.

The ALIAS command
The ALIAS command defines simple aliases for the debugger’s command interface.
When it starts processing a command line, the debugger first determines if the first
token in the command line corresponds to an alias. If so, the debugger replaces the
token with the alias string and repeats the process.

This substitution process is iterative but not recursive. The debugger continues this
process until there are no matches, but a given alias can only be used once in the
expansion of a given command line.

For example, consider how the debugger handles the command line next if next is
aliased to s, and s is aliased to s/into. The debugger first substitutes s for next. Then it
checks the aliases again and substitutes s/into for s. Then it checks the aliases again.
This time, it does not use the definition of s because it has already been used on this
command line.
MicroStation MDL Programmer’s Reference Guide 9-5

Debugging MDL Applications
The BREAKPOINT command
The search for alias is case sensitive. Therefore, it is possible to alias s to one command
and S to another command.

The syntax for the alias command is:

ALIAS <NAME> <SUBSTITUTION STRING>

The substitution string may appear with or without quotation marks. If quotation marks
are used, they are not included as part of the alias definition. Quotation marks are
required if the alias definition includes a semi-colon. Without the quotation marks, the
semi-colon is interpreted as a statement terminator.

Use the /delete modifier to delete an alias. If the alias name is specified, then that alias
is deleted. If the /all modifier is specified after /del, then all of the aliases are deleted.
If /all is not specified and no name is specified, then the user is queried regarding each
alias.

The following examples show ways to use variations of the ALIAS command:

The BREAKPOINT command
The BREAKPOINT command lists or modifies break points. It accepts a series of code
points separated by commas as arguments. A code point can be specified by a function
name, a line number, or a period to refer to the current address. The line number may
be preceded by a string to specify a filename. Following are the acceptable modifiers
for the BREAKPOINT command:

/delete, /<count>

The following examples show ways to use variations of the BREAKPOINT command:

Variation Description

alias lists the currently defined aliases.

a estr prints the current definition of the alias estr.

alias estr e/str defines the alias estr to mean e/str.

alias/del/all deletes all aliases.

alias/del estr deletes the alias for estr.

Variation Description

b 125 sets a break point at line 125 of the current source
file.

break testFunc sets a break point at the function testFunc.
9-6 MicroStation MDL Programmer’s Reference Guide

Debugging MDL Applications
The CALLS command
The BREAKPOINT command may contain a statement block on the same line. The
statement consists of a list of MDL debugger commands. The entire list is enclosed in
curly braces. The statements are separated by semi-colons. The following example
shows how the statement block can be used:

b displayElement {if (elP->ehdr.type != 3) {eval/str "type is"; elP->ehdr.type;go}}

When the breakpoint occurs, the MDL debugger evaluates the conditional
(elP->ehdr.type != 3). If it is true, then the debugger executes the following three
debugger commands:

eval/str "type is"
elP->ehdr.type
go

Otherwise, it stops at the breakpoint.

The following breakpoint never stops. It just displays the type if it is not 3.

b displayElement {if (elP->ehdr.type!=3) {eval/str "type is"; elP->ehdr.type;go} else
{go}}

The CALLS command
The CALLS command determines the sequence of calls that caused the current
function to be reached. The output of calls also reports the parameter values to each
function. The stack trace also prefixes each line with a frame number. This frame
number can be used as input to the SCOPE command

b main, "test.mc"127 sets break points at main and line 127 of the
test.mc file.

br/del deletes all break points. The user is queried for
each break point before deletion.

br/del main deletes the break point at main.

b/5 sets a break point at the current location that
causes a break every fifth time the instruction at
the current address is executed.

Variation Description
MicroStation MDL Programmer’s Reference Guide 9-7

Debugging MDL Applications
The DISPLAY command
This command uses the following modifier:
/<count>

The DISPLAY command
The DISPLAY command displays data in formats other than the format implied by the
type of data. The MDL debugger also accepts EVALUATE as a synonym for DISPLAY.

The DISPLAY command supports modifiers for selecting data size, for selecting output
radix, and for controlling how strings are displayed.

The modifiers /char, /short, /long and /double select data size. Without one of these
modifiers, the debugger determines the data size based on the expression supplied as
an argument. If one of these modifiers is used, it can be combined with a repeat count
in the following format:

/<type>:<count>

The modifiers /hex, /octal and /decimal specify how integer values and pointers
should be displayed.

The modifier /str specifies that the debugger should display strings for fields that are of
type array of characters or array of unsigned chars, and all fields that are of type
pointer to char or pointer to unsigned char.

The modifier /wstr specifies that the debugger should display strings for fields that are
strings of type MSWideChar. When the debugger encounters an array of type
MSWideChar or a pointer to MSWideChar, it converts the MSWideChar strings to a
multi-byte string, and then displays the multi-byte string.

Variation Description

ca/5 displays a stack trace, displaying 5 calls.

Variation Description

dis/str *tcb display the contents of the TCB. Interpret as
strings all fields that are arrays of chars or
unsigned chars, and all fields that are pointers
to char or unsigned char.

dis/long:10 *tcb display the first ten 4-byte words of the TCB.

dis/str/hex chTextInfo display the contents of the structure chTextInfo.
Interpret as strings all fields that are arrays of
chars or unsigned chars, and all fields that are
pointers to char or unsigned char. Display all
numerical fields in hex.
9-8 MicroStation MDL Programmer’s Reference Guide

Debugging MDL Applications
The DOWN command
The DOWN command
The DOWN command selects the scope the debugger uses for evaluating expressions.
It moves the context one step farther from the scope that contains the last execution
point.

See “The UP command” on page 9-14 and “The SCOPE command” on page 9-12 for
more information.

The DUMP command
The DUMP command provides a formatted dump of a block of memory, giving both
the ASCII and numeric representations of the data.

Use one of the following modifiers to specify the data size: /char, /short or /long. Also,
a repeat count may be specified as an modifier. Both the count of bytes to dump and
the data size are remembered from the previous dump command if they are not
specified.

If an address is specified, it is used as the starting address for the dump. If no address
is specified, the DUMP command starts with the first address following the previous
dump.

The following examples show ways to use variations of the DUMP command:

e strcpy (buff, "new text") copy the string new text into the character array
buff, and then display the address of buff.

dis/long:20 (long *)0x40051234 display 20 longs starting at the address
0x40051234. (long *) is included in the
command, because the display command
expects the argument to be a pointer type.

Variation Description

dump/200 textRscP dump 200 bytes starting at the address pointed to
by textRscP.

dump/long &textRscP dump 64 bytes starting at the address of textRscP.
The numbers are interpreted as longs.

dump Dump more data starting at the first address
beyond the previous block, using the same data
size and repeat count as the last dump command.

Variation Description
MicroStation MDL Programmer’s Reference Guide 9-9

Debugging MDL Applications
The GO command
The GO command
The GO command tells MicroStation to resume program execution. It can also specify
some temporary break points. It accepts a code point specification as arguments. This
specification can be a line number, function name, or period for the current address.

The following examples show various ways to use the GO command:

The HELP command
The HELP command displays helpful information on the MDL debugger’s commands.

The command uses the following modifiers: /alias, /breakpoint, /calls, /display,
/down, /go, /if, /memory, /quit, /record, /scope, /set, /step, /symbols, /type, /up
and /watch.

The following examples show various commands for which HELP information can be
obtained:

The IF command
The IF command evaluates an expression and conditionally executes the debugger
commands that follow the conditional clause. The statements that follow the
conditional clause must be enclosed in {curly braces}. The IF command may have an
else clause.

Variation Description

g tells MicroStation to run until the next break point
is encountered.

g 125 tells MicroStation to run until the next break point
is encountered or until an instruction
corresponding to the code at line 125 is executed.

g . tells MicroStation to run until the next break point
is encountered or until the current instruction is
encountered again.

Variation Description

help/br displays information on the BREAKPOINT
command.

help/calls displays information on the CALLS commands.
9-10 MicroStation MDL Programmer’s Reference Guide

Debugging MDL Applications
The MEMORY command
The IF command is intended primarily for use with break points. See “The
BREAKPOINT command” on page 9-6 and “The IF command” on page 9-10 for
examples.

The MEMORY command
The MEMORY command displays the starting addresses of all blocks of memory
currently allocated by the application. The list does not contain the addresses of freed
blocks.

All blocks in the list were allocated with malloc, calloc or realloc. The block may
have been allocated by the application calling these functions directly, or by the
application calling other built-in functions that call the memory allocation functions.

The following modifier can be used:
/size

If the environment variable MS_DEBUGMDLHEAP is defined, then MicroStation remembers
the size of every block of memory allocated with malloc, calloc or realloc by every
MDL program. Therefore, when it displays the address of each block of memory it can
also display the size. Use the /size modifier to tell MicroStation to display the sizes.

The QUIT command
The QUIT command exits MicroStation from the debugger and unloads the application.

Under DOS the modifier /ustation is supported. This causes MicroStation to exit back
to the command line. This modifier is intended only as a last resort. Neither
MicroStation nor MDL applications are given any chance to clean up.

The RECORD command
The RECORD command causes MicroStation to start recording the debugger’s input
and output.

The following modifiers can be used:
/input, /output, /all, /append, /replace, /stop, /default

/input specifies that only the input from the user should be recorded. /output specifies
that only the debugger’s output should be recorded. /all specifies that both the input
and output should be recorded.

/append specifies that the information should be appended to the recording file.
/replace specifies that the recording file should be replaced if it currently exists.
MicroStation MDL Programmer’s Reference Guide 9-11

Debugging MDL Applications
The SCOPE command
/stop means stop recording.

/default means that current command should not start or stop record. The modifiers
and file name are saved as default for the subsequent record commands.

After the modifiers, specify a file name in a quoted string.

The defaults are to append to the file mdldebug.log, recording both input and output.

The following examples show ways to use variations of the RECORD command:

The SCOPE command
The scope command lets the programmer set the scope to any scope in the stack trace,
or to any source file in the application. The syntax for the scope command is:

scope <new frame number>
scope .
scope <source file name>

To get the frame number, use the calls command. Frame number 0 always refers to the
currently executing frame. As with the other debugger commands, the dot refers to the
current execution point. Therefore, scope 0 and scope . are synonymous.

scope <source file name> sets the scope to a specific source file. After this command
is executed, there is no function scope available. Only the file scope is available.

The UP and DOWN commands can be used to change the scope to the next or
previous scope.

Variation Description

record/default/repl "/usr2/tmp/
mdb.log"

sets the defaults so that the file
/usr2/tmp/mdb.log is used. It is
replaced every time the debugger starts
recording.

record start recording using the current
defaults.

record/st stop recording.
9-12 MicroStation MDL Programmer’s Reference Guide

Debugging MDL Applications
The SET command
The SET command
The SET command controls various aspects of the debugger’s behavior.

Use the SET CASE command to control whether the MDL debugger’s C expression
evaluation is case sensitive. set case on makes it case sensitive. set case off makes it
case insensitive. By default, the debugger is not case sensitive.

Use the SET TAB command to control the tab stop intervals used by the debugger
when displaying source code. By default, the debugger uses a tab stop interval of 8.
The command set tab 1 sets the tab stop interval to 1, essentially turning off tab
expansion.

The STEP command
The STEP command controls debugger activation. When used with one of the
following modifiers, this command specifies when the debugger will be activated:

The SYMBOLS command
The SYMBOLS command lists the MDL application’s symbols that can be used in
debugger commands.

This command accepts a string used to restrict the list of symbols displayed as an
argument. The following modifiers are used: /functions, /variables and /structures.

Variation Description

step/into indicates that the debugger will be activated the next
time an instruction corresponds to a new line of code.

st/over indicates that the debugger will be activated the next
time an instruction corresponds to a new line of code
in the same function.

st/from indicates that the debugger will be activated the next
time an instruction is executed in the function that
called the current function.

st/<count> specifies the number of times the criteria must be met
before the debugger is activated.
MicroStation MDL Programmer’s Reference Guide 9-13

Debugging MDL Applications
The TYPE command
The following examples explain various ways the SYMBOLS command is used:

The TYPE command
The TYPE command types the line following the last line typed. It accepts the
argument <line numbers>. A line number can be provided as a number, a number
preceded by a source filename, a dot to refer to the line corresponding to the current
execution address, or a function name. If no line number is specified, the line
following the last line printed is specified.

The following modifier can be used:
/<count>

The following examples show ways to use variations of the TYPE command:

The UP command
The UP command selects the scope the debugger uses for evaluating expressions. It
moves the context 1 step closer to the scope that contains the last execution point.

See“The DOWN command” on page 9-9 and “The SCOPE command” on page 9-12 for
more information.

The WATCH command
The WATCH command invokes the MDL debugger when a location in memory is
modified. This command is only supported in the DOS version.

Variation Description

symbols/f pla displays all function names that contain pla.

sym/st displays the names of structures and unions that
can be used in casts.

sy/f/v av displays the names of all functions and variables
that contain the string av.

Variation Description

type/20 "main.mc"1 types lines 1 to 20 of master.mc.

t/-20. types the line containing the current execution address
and the 19 lines preceding it.

t/30 dochangesingle types the line containing the declaration of the function
doChangeSingle, and the subsequent 29 lines.
9-14 MicroStation MDL Programmer’s Reference Guide

Debugging MDL Applications
Memory Debugging
On the PC, WATCH is implemented with the hardware debug registers. A maximum of
4 watch points exists. Because of restrictions for the hardware registers, WATCH can
watch only one byte rather than the entire variable specified.

The argument for a watch instruction must be an expression that evaluates to a pointer
type. If the program contains the declaration int i1;, &i1 is a valid argument.
However, i1 is not since it evaluates to type integer. If the program contains the
declaration int *pInteger;, pInteger and &pInteger are valid arguments. pInteger
watches the address pInteger points to. &pInteger watches the address of the variable
pInteger.

The following modifier is used with this command:
/<count>

Memory Debugging
To enable memory debugging, define the environment variable MS_DEBUGMDLHEAP. In
most cases, you will want to set it to the name of your application. If memory
debugging is not enabled, MicroStation should run exactly as before. If it is enabled,
the performance of MicroStation will suffer in some cases and MicroStation will use
more memory.

The following debugging tools are available:

1. When memory is freed, the entire block is set to 1. This should cause
catastrophic errors in the MDL application if it continues to use the
memory block after freeing it.

2. Every block of memory is bracketed by special markers. Both free
and realloc check these markers to verify that they are intact. If
either marker is corrupted, then MicroStation prints out an error
message, the first 20 bytes of the block, the last 16 bytes of the block,
and the first 4 bytes after the block. It also aborts the MDL application.

3. The MicroStation command MDL HEAP <task ID> causes
MicroStation to display a list of blocks that the application has
allocated. If MS_DEBUGMDLHEAP is defined, MicroStation also examines
the markers on all of the blocks and reports if any are corrupted.

4. The MDL debugger command memory also causes MicroStation to
display a list of blocks that the application has allocated. If
MS_DEBUGMDLHEAP is defined, MicroStation examines the markers on all
of the blocks and reports if any are corrupted.

5. If the application specified by MS_DEBUGMDLHEAP calls any of the heap
management functions (malloc, calloc, realloc or free), then
MicroStation examines all of the blocks currently allocated by that
MicroStation MDL Programmer’s Reference Guide 9-15

Debugging MDL Applications
Automatic Fault Reporting
application. If MicroStation finds a corrupted marker on any of the
blocks, then it displays the relevant data and aborts the application.

If MS_DEBUGMDLHEAP is defined, then the first tools 1 through 4 are available. If
MS_DEBUGMDLHEAP specifies the task ID of an application, then 5 works for that
application. That is, MicroStation scans the application’s malloc list on every call to
malloc, calloc, realloc and free. If MS_DEBUGMDLHEAP is defined as ALL, then 5 works
for all applications.

MicroStation converts the value of MS_DEBUGMDLHEAP to upper case, so the case is not
important. If MS_DEBUGMDLHEAP is defined, then MicroStation displays the message
MS_DEBUGMDLHEAP is defined as <value> at startup.

Automatic Fault Reporting
When MicroStation encounters a fault in an MDL program it examines the environment
variables MS_DEBUGFAULT and MS_MDLTRACE to determine how to report the fault.

Regardless of whether these environment variables are defined, MicroStation writes
messages to the command window providing information on the type of error and
where the error occurred.

If MS_DEBUGFAULT is defined, MicroStation tries to invoke the MDL debugger for the
application that caused the fault. MicroStation tries to do this even if the application
was not being debugged. MDL developers should always have MS_DEBUGFAULT enabled
so they do not need to try to reproduce unexpected faults. MicroStation ignores
MS_DEBUGFAULT if the fault occurs in an application that does not have any debugging
information. An application has some debugging information unless it was linked with
the -go modifier.

If MS_MDLTRACE is defined, MicroStation prints debugging information to stdout.
MicroStation prints the cause of the fault and the location where the fault occurred. It
also displays the name of each MDL application it encounters while unwinding the
stack. For example, if an error occurs in an MDL application’s dialog hook function that
was called by MicroStation’s Dialog Manager (the DITEMS MDL task), then
MicroStation would first print a description of the error, then information on the
application containing the hook function, and then information on DITEMS.

Debugger Initialization File
The first time it is invoked in a MicroStation session, the MDL debugger checks for the
environment variable MS_DBGINIT. If it is defined, then the debugger interprets the
definition as a file name. The debugger opens the file and reads the file, interpreting
the contents as debugger commands.
9-16 MicroStation MDL Programmer’s Reference Guide

10 Documentation
No software product is complete without adequate documentation. At
its most primitive, documentation tells users how to install the
software, what basic features are included, and how they are used.
But complete documentation goes much farther, including such
features as lessons and tutorials, illustrations, glossaries and on-line,
context sensitive help. Internationally distributed software also offers
documentation in a variety of languages.
Useful Documentation
Documentation is an extension of the user interface and is an integral and required
part of each feature.

This chapter will provide you with the basic information needed to create useful and
consistent documentation for your application. It does not dictate the platform or the
software to be used to create documentation (within certain limitations; see below),
and it assumes that you are familiar with the post-production steps necessary to see
your documentation through to final-copy. The primary objectives of the design of
printed and on-line documents are to make them easy to read and to make it easy to
find information. As always, form should follow function.

Development Methods
Most word processors understand only two data structures, the paragraph and the
character string. Many let you tag paragraphs with what are commonly referred to as
styles or tags; some also let you tag character strings. Each style defines the
appearance of the text it tags. The collection of styles that determine a document’s
overall appearance is commonly called a style sheet or format catalog.

The Help creation tools are best used with a well-structured document. A document
that is logically divided into many short sections by use of chapters, headings, and
subheadings produces the most easily navigable help file. Each chapter or heading title
becomes the title of a help article, and the subtopics within it become the “children” of
the help article.
MicroStation MDL Programmer’s Reference Guide 10-1

Documentation
Tools
Tools
All printed and on-line documentation for MicroStation and MDE was produced using
FrameMaker and Microsoft Word, both of which are available on a variety of platforms.
The MicroStation 5.0 on-line help system reads files in the compiled Intergraph Help
(I/Help) format and, for compatibility with earlier releases, help resources. I/Help is a
platform-independent file format, so you only have to compile help on one platform
for all your releases.

You can construct your own I/Help source files by manually tagging an ASCII text
version of your documentation, then compiling with the I/Help compiler. However, the
preferred method of on-line help generation is to use the mif2s or rtf2s utilities,
available upon request, to convert MIF (generated by FrameMaker) and RTF files
(generated by MS Word) into I/Help source format. Templates for both FrameMaker
and MS Word are available on request that will help you format your documentation
with style sheets that the on-line help reader can recognize. Any product that can both
import and export MIF or RTF formatted files without a loss of style-sheet definitions
can be used to generate on-line help.

✍ The available RTF template may not be compatible with WordPerfect.

You can also use your own style sheet to create your printed and on-line
documentation. If you choose this option, you must edit the mif2s.set or rtf2s.set file
so that the conversion utility will know how to read your style sheet.

The settings files mif2s.set and rtf2s.set define how FrameMaker and Microsoft Word
styles are converted to I/Help. Because there are typically far more styles than I/Help
tags, many styles can be, and typically are, mapped to one I/Help category. The
settings files are text-based, and are divided into sections consisting of a category name
enclosed in brackets followed by one or more style names, one per line. Style names
must be contained in quotation marks ("") if the style name has any white space in it.
Any line beginning with a semi-colon ‘;’ is a comment and is ignored.

MIF (FrameMaker)

RTF
(word or other)

Tagged ASCII
created some other
way

I/Help
8.0

Source

MicroStation
compiled help

Windows compiled
help

ASCII text file

Figure 10.1 On-line help configuration.
10-2 MicroStation MDL Programmer’s Reference Guide

Documentation
Tools
The contents of the settings files are listed below:

Setting File Group Styles Listed Therein Are

[TopicBodyPara] Passed as plain text. Paragraph numbers are ignored. Two carriage
returns are placed at the end of each paragraph.

[ListEntryPara]
(MIF only)

Considered list entries. Paragraph numbers or bullet characters are
included if present. Paragraph text is indented. One carriage return
is placed at the end of each paragraph.

[LastListEntryPara]
(MIF only)

Treated the same as [ListEntryPara] styles, except that two
carriage returns are placed at the end of each paragraph.

[IgnorePara] Ignored.

[AttentionPara] Treated as body text except that user-definable words are inserted
before them. Note, Hint, Warning and Procedure are the supplied
defaults. Syntax is:
"<stylename>"<whitespace>"<prepend string>"

[AttentionChar] Treated the same as [AttentionPara] styles, except that it allows
the use of one style for all attention paragraphs, with each
containing a specific character to signify the specific attention
message. Syntax is:
"<stylename>"<whitespace><attn character>
<whitespace>"<prepend string>"
Be aware that <attn character> must be specified as a single
character, not as an ASCII value in decimal or hex notation.

[HelpTogglePara]
(RTF only)

Used to signal the help converter to ignore any and all subsequent
paragraphs until another paragraph in one of these styles is
encountered. This is useful for omitting documentation from on-line
help that must appear in the printed version.

[MonoPara] Displayed in the Help window in a monospaced (non-proportional)
font.

[MonoFont] Displayed in the Help window in a monospaced (non-proportional)
font.

[HyperTextFont]
(RTF only)

Made into hypertext jumps if a destination can be found. A warning
is issued in the log file if no destination could be found.

[ContextPara] Used to mark an article for later retrieval by context sensitive help.
Styles used for this purpose are usually conditional and/or hidden
in the style sheet.

[KeyinPara] Treated as body text except that the word Key-in: is inserted
before the paragraph. Also, if header files have been specified
“[HeaderFiles]”), the help conversion tools attempt to match this
text to key-in commands listed in the files.
Similar to [ContextPara] (above), [KeyinPara] is used to mark
articles for later retrieval by help tracking.
MicroStation MDL Programmer’s Reference Guide 10-3

Documentation
Tools
W Any style encountered in a MIF or RTF file that is not listed in the
corresponding settings file generates a warning message, and text marked
with that style is passed as [TopicBodyPara].

✍ The settings file groups may be in any order, organize them as you wish.

[TableTitlePara]
(MIF only)

Displayed as table titles.

[TableEntryPara]
(MIF only)

Flowed into table cells.

[TopicTitlePara] Used by the conversion utilities to specify the logical depth of each
type of heading paragraph. Paragraphs in these styles are converted
into topic titles. The numbers indicate the logical depth of each
heading type within the document, “1” being the lowest level
(Chapter, for example). Syntax is:
<name><whitespace><depth (1 or higher)>

[SubTopicTitlePara] Paragraphs in these styles are NOT converted into topic titles. Their
logical depths are lower than those of [TopicTitlePara]. Instead
of becoming topic titles, they are displayed in bold font with a
blank line before them.

[ConvertXRef]
(MIF only)

Converted into hypertext jumps, provided the destination is one of
the header paragraph types listed in [TopicTitlePara].

[IgnoreXRef]
(MIF only)

Passed through as plain text with no warning message and no
attempt to convert into hypertext.

[HeaderFiles] This section actually lists a set of filenames, rather than paragraph
styles. The files specified should be command list header files
generated by the MDL resource compiler. The help conversion tools
attempt to match text marked as key-ins in the MIF or RTF file with
commands in the generated header files, and insert data needed for
context sensitivity and tracking into the help source file.

[SpaceAfterCutoff]
(RTF only)

Instead of listing one or more styles, this section contains only a
single number of the range 1-72. Any paragraph in the source
document that is styled with a “Space After” that is equal to or
greater than this value (in points) will be followed by a blank line
when converted into on-line help.

Setting File Group Styles Listed Therein Are
10-4 MicroStation MDL Programmer’s Reference Guide

Documentation
Converting to Help
Converting to Help
Once the MIF or RTF files have been created, they need to be converted into the
I/Help intermediate format. This gives all help sources a common ground from which
they can be converted to any final format. MIF files are converted into I/Help .s files
using the mif2s utility. RTF files are converted into .s files using the rtf2s utility.

The syntax for the mif2s conversion utility is:

MIF2S [arguments] <input file>

arguments can be any combination of the following:

input file is a single .mif file or a book file that contains a series of .mifs.

✍ You can store the mif2s utility anywhere you like, but it should be invoked
from the directory in which the .mif files are stored. See Example below
for more information.

Example
C:\MIFS> \doctools\mif2s -t"Application Help" bookfile.mif -oapplhelp.s

Note the following points about the line above:

• The source .mif files are stored in C:\MIFS, and we were sure to
invoke mif2s from that directory.

• The input to the utility was a bookfile, and that bookfile, as well as the
FrameMaker documents to which it referred, were exported to .mif
format prior to running mif2s.

flag description

-t Specify title of the output file. Enclose the title in quotes if it contains
spaces. Default is Help.

-o Specify output file. If you do not specify an output file when invoking
MIF2S, you will be prompted for one when it runs.

-s Specify the settings file. If not specified, mif2s.set is the default.

-t Suppress output of topics.lst.

-n Add line numbers to the .s file for debugging purposes. This argument is
rarely used, but can be useful if the .s file is not turning out properly.

-d Specify version, language, and logical name of the output file. Default is
01.00.00.00:english:help. This argument is rarely used, as the
information it specifies is only used by Intergraph help conversion
programs.
MicroStation MDL Programmer’s Reference Guide 10-5

Documentation
Example
• The filenames in the bookfile do not have to be changed to have .mif
suffixes.

• The order of the arguments, such as the input and output files does
not matter.

After mif2s has finished writing the .s file, it also writes out the file topics.lst. This file
can be examined to see if all the intended topics converted correctly.

The syntax for the rtf2s conversion utility is:

RTF2S [arguments] [input file]

arguments can be any combination of the following:

input file is the first RTF file in the series. It should only be designated if a listfile is not
specified.

✍ Unlike the mif2s utility above, the rtf2s utility does not have to be
invoked from the directory in which the RTF files are stored. This is
because the listfile can contain complete paths to the source RTF files,
allowing them to be stored in multiple subdirectories.

Example
C:> \doctools\rtf2s -t"Application Help" -llistfile.txt -
oapplhelp.s

Note the following points about the line above:

• The source RTF files can be stored anywhere as long as the paths to
them in listfile.txt are correct.

flag description

-t Specify title of the output file. Enclose the title in quotes if it contains
spaces. Default is Help.

-l Specify name of a listfile containing the RTF filenames to process. This
argument should not be specified if an input file is to be designated.

-o Specify output file. If you do not specify an output file when invoking
RTF2S, you will be prompted for one when it runs.

-d Specify version, language, and logical name of the output file. Default is
01.00.00.00:english:help. This argument is rarely used, as the
information it specifies is only used by Intergraph help conversion
programs.
10-6 MicroStation MDL Programmer’s Reference Guide

Documentation
Documentation Principles
• The input to the utility was an ASCII listfile that contains nothing but
the fully-qualified filenames of the source RTF files. The files are listed
in the order in which they are to be processed; that is, the order in
which they are to appear in the final helpfile.

• The order of the arguments, such as the input and output files does
not matter.

Documentation Principles
Documentation is part of the product. The only reason documentation exists is to help
users use the software. Typically, if software is hard to comprehend, some users may
say the documentation is unclear; others may say the software is too hard to use. In
many cases, both the software and the documentation may need improvement.

Developers should be aware that creating easy-to-use software and quality
documentation cannot be accomplished separately. Create a good user interface first.
In general, the goal is a program that is “self-documenting.”

• Procedures are as intuitive as possible.

• The program provides assistance when needed; either when the user
requests it or when the software senses it is required. Assistance can
come from Help or from the software itself; ideally there really is no
obvious difference Ñ all components work together.

• The “assistance” never interferes with the user who already knows
what to do, and shortcuts are provided for advanced users.

Bentley Systems recommends following these basic principles when creating
documentation:

• On-line and printed versions should be created from a single source
whenever possible.

• Organize documents to work well both in print and on-line. If there is
a conflict between what is optimal for on-line versus print, the on-line
version has precedence.
Tools for converting source materials to on-line documents are
designed to minimize human intervention.

• Effective illustrations should be used to clarify information that is
difficult to explain in words.

• All document text should be tagged according to its purpose, with
minimal hard formatting (bold, italics, and so on) directly applied.

• Keep terminology and graphic symbols consistent so that they will be
clear to users of all supported systems. Where possible, BSI
MicroStation MDL Programmer’s Reference Guide 10-7

Documentation
Relevant sections of MicroStation’s documentation
terminology is consistent with the OSF/Motif and Microsoft Windows
standards.

• Where possible, content that applies to several products or platforms
should be re-used.

• Documents should be written and designed to make translating into
other languages as easy as possible.

Conventions are explained in the MicroStation documentation in the following places:

Relevant sections of MicroStation’s documentation
In many cases, applications need not re-create the sections in the MicroStation User’s
Guide that cover basic operating concepts. Most users should complete at least the
following to learn basic MicroStation operations:

• In Introducing MicroStation, “Getting Started.”

• In the User’s Guide, “Fundamentals” and “Basic 2D Design and
Drafting.”

Once completed, the user should be able to operate most parts of your application’s
interface. Because you know the parts of the documentation that are most important to
your application, you can:

• Supplement the material in MicroStation’s documentation with more
detail or detail specific to your application.

• Give alternate recommendations to those in the MicroStation
documentation for users of your application or at your site.

• Tell users to ignore those parts of the MicroStation documentation that
are not relevant to using your application.

Section Explains

“Document Conventions”
at front of each guide

Terminology and typographic conventions.

Lessons in User’s Guide Meaning of important terms and operations, such as
Reset, data point, tentative point and accept.

Glossary Defines terms.
10-8 MicroStation MDL Programmer’s Reference Guide

Documentation
Why your application should have on-line documentation
Why your application should have on-line documentation
Developers should provide on-line help that can be viewed in MicroStation’s Help
window for the following reasons:

• It is usually neither cost-effective nor user-friendly to have your own
Help system.

• Users have come to expect high-quality on-line manuals.

BSI will supply FrameMaker or Microsoft Word templates to interested third-parties and
will answer questions about these templates. You can customize these templates if
necessary.

The I/Help 8.0 tags used by MicroStation are covered in the on-request document
“I/Help 8.0 Format.”

Since each developer’s document production needs are unique, contact Bentley
Support at Bentley Systems if you have questions about on-line or printed document
production, or require any of the aforementioned items.

Suggested Application Document Organization
Larger applications can have a separate user’s and reference guide, and perhaps even
developer’s guide.

Applications should supply a glossary of terms that are specific to the application and
not generally understood by potential users. If you follow the MicroStation conventions
closely, most terms are already defined in MicroStation’s glossary.

Including these appendices is useful for most applications:

• Tools listed alphabetically.

• Settings listed alphabetically: All settings used by the application and
how they are set.

• Commands listed alphabetically by key-in name.

Information for context-sensitive help

For context-sensitive help, tag at least one paragraph with a [ContextPara] designated
style. The information in this paragraph is used to generate the help topic’s logical
name.

All tools must have a key-in; many dialog items should. If a dialog item has a key-in,
the key-in should be used to generate the help logical name since it appears in the
document anyway.
MicroStation MDL Programmer’s Reference Guide 10-9

Documentation
MDL applications
MDL applications

When a feature that is an MDL application can be started from the GUI, it is
documented in that place and the fact that it is an MDL application is de-emphasized.

Distributed MDL applications (.mas) should have MicroStation help .hc, Windows help
.hlp and ASCII .txt files with the same filename.

Opening the Help window from MDL applications

Three key-in help commands are provided that should be useful to the MDL
programmer.

HELP CONTENTS [filename]

opens the help window if necessary and displays the table of contents of the specified
file, or of the main MicroStation help file if none is specified. The filename should have
no extension (.hc is appended) and should have no path. The help system searches for
the file in the directories specified in the environment variable MS_HELPPATH.

HELP SEARCH [filename]

opens the help window if necessary, opens the specified help file or the main help file,
and opens the Search window for a search of the file.

HELP TOPIC [filename] [topic logical name]

opens the help window if necessary and attempts to display the given topic within the
given file.

Dialog items that activate the help system can be constructed easily using these
commands. For example, an MDL application called MYAPP might have a pull-down
menu item like this:

{TXT_HelpOnMyAPP, NOACCEL, ON, NOMARK, NOSUBMENU, 0, 0,
CMD_MDL_KEYIN, "USTNHELP HELP CONTENTS myapp"};
10-10 MicroStation MDL Programmer’s Reference Guide

11 Element Descriptors
An element descriptor is a multiple linked list of elements that an
application can easily traverse. All memory associated to the element
descriptor is allocated by MicroStation.
Element Descriptors

✍ An application should never malloc an element descriptor directly.

Element descriptors are an in memory representation of elements in the design file;
they do not reside in the design file. When a complex element (for example, a cell or
text node) is read into an element descriptor, the element descriptor read function sets
up all of the nesting for that complex element.

MicroStation updates the header information in complex elements when the elements
in the element descriptor are written back to disk. This removes the responsibility of
setting words to follow (WTF), levelMask, etc., from the application.

Element descriptors can represent cells and shared cells, complex chains and shapes,
or a group of elements such as the selection set or fence contents.

Element descriptor header information includes:

• Pointers to: next, previous, parent and child element descriptors.

• Flags to determine if the element in the element descriptor is a
complex header element and, if so, if the data in that header
accurately reflects the data in the rest of the element descriptor.

• Two long words for application information storage - these can the
value of a pointer in your application, file position, or other
application-specific information. This is not user attribute linkage
information. User attribute linkage information is stored in the el
portion of the element descriptor.
MicroStation MDL Programmer’s Reference Guide 11-1

Element Descriptors
Sample element descriptors
struct msElementDescr
{

struct
{

MSElementDescr *next; /* ptr to first entry in list */
MSElementDescr *previous; /* ptr to last entry in list */
MSElementDescr *myHeader; /* ptr to my hdr */
MSElementDescr *firstElem; /* ptr to first elem if header*/
int isHeader; /* is this a complex header */
int isValid; /* INTERNAL USE ONLY */
long userData1; /* available for user */
long userData2; /* available for user */

} h;
MSElement el; /* elem data */

};

Sample element descriptors

(any not shown point to null)

Cell Header

Line

Arc

Text

firstElem

myHeader

next
previous
11-2 MicroStation MDL Programmer’s Reference Guide

Element Descriptors
Sample element descriptors
This is an in-memory representation of a cell with three primitive elements. myHeader
points back to the cell header from each component element.

This is an in-memory representation of a cell with two primitive elements and on
nested cell.

This is an in-memory representation of a selection set.

Text

Line

Cell Header

Cell Header

Arc

Ellipse

firstElem

myHeader

next
previous

Shape

Arc

Text Node

Arc

Ellipse

Line String

firstElem

myHeader

next
previous
MicroStation MDL Programmer’s Reference Guide 11-3

Element Descriptors
Recursive programming
Recursive programming
A recursive function is a function that calls itself. Element descriptors, because of their
multiple links, lend themselves quite well to recursive programming.

Recursive programming and element descriptors are perfectly suited for nested
complex elements because at each level of nesting the application simply calls the
recursive function to do any processing.

Recursive programs can be difficult to debug because it is often difficult to determine
how deeply nested the program is at any given time.

Stack usage must be carefully monitored when recursively processing element
descriptors. Each invocation of the recursive function uses stack space for all of its
automatic variables.

This is an example of a recursive function that modifies an element descriptor:

Private void modElementDescriptor
(
MSElementDescr *elmdP
)
{

do
{

/* if this is a header element, call with first child element */
if (elmdP->h.isHeader)

modElementDescriptor(elmdP->h.firstElem);
else

changeElement (elmdP->el);
} while (elmdP->h.next != NULL);

}

Functions that use element descriptors
Functions that use element descriptors include all mdlElmdscr_…, mdlModify_…,
mdlCell_…, mdlSharedCell_…, mdlBspline_… and mdlDynamic_setElmDescr, with more
to come.

Element descriptor validation
Element descriptors validate the data in complex headers, including range, class and
level bit map, words in description, number of elements, number of poles and
maximum length of a text element in a text node.

Validation is automatic when an element descriptor is added to the design file.
11-4 MicroStation MDL Programmer’s Reference Guide

Element Descriptors
Cautions about memory use and element descriptor size
To force an element descriptor to be validated, set elmdP->isValid to FALSE.

W Never set elmdP->isValid to TRUE. An application can check if the flag is
TRUE, but should never set it to TRUE.

Cautions about memory use and element descriptor size
Element descriptors can use a lot of memory. Although MicroStation allocates the
memory for an element descriptor, an application must tell MicroStation to free the
memory allocated to an element descriptor when the application is finished with it. For
debugging, periodically use the command SHOW HEAP ELMD to determine if all
memory allocated to element descriptors has been freed.

Do not copy to/from element descriptors using sizeof(MSElement). The el portion of
the element descriptor is dynamically allocated to only hold the size of the actual
element. To get the size of the el portion of the element descriptor, call
mdlElmdscr_igdsSize.
MicroStation MDL Programmer’s Reference Guide 11-5

11-6 MicroStation MDL Programmer’s Reference Guide

12 Standard C Functions
This section lists the standard C functions that MDL currently supports.
It also lists standard C functions that are replaced by similar functions.
ANSI Standard Functions
For ANSI standard functions, the function prototypes are provided in the standard
header files. For example, the prototypes for fopen and fread are included in stdio.h,
and the prototypes for qsort and bsearch are in stdlib.h. The following headers are
provided:

“assert.h” “ctype.h” “errno.h” “float.h” “limits.h”

“math.h” “setjmp.h” “stdarg.h” “stddef.h” “stdio.h”

“stdlib.h” “string.h” “time.h”

All the headers listed on p. 241 of “The C Programming Language,” 2nd Edition, are
included except signal.h and locale.h. The functions defined in signal.h and locale.h
do not apply to MDL, and are not supported.

The functions in the header files above are not documented separately unless the
functions that MDL provides differ from the functions ordinarily provided in C libraries.
Exceptions in MDL are as follows:

• stdin, stdout and stderr are supported. Only DOS and UNIX
platforms support stdin, and when MicroStation is in graphics mode
it does not make sense to use stdin. In fact, once MicroStation is in
graphics mode the behavior of stdin is undefined. stdin should only
be used in MDL programs started as MS_INITAPPS applications.

• atexit is replaced by the user function userSystem_unloadProgram.
This function is specified to MicroStation with
mdlSystem_setFunction.

• system is replaced by mdlExternal_… functions.
MicroStation MDL Programmer’s Reference Guide 12-1

Standard C Functions
ANSI Standard Functions
As implemented in MicroStation PC, the fopen function opens files with deny-none
file-sharing mode by default. To modify the sharing mode for a given MDL task, use
the mdlFile_setDefaultShare function. If the DOS SHARE utility is installed, the
sharing mode indicates the type of access that other network users can have to the file.
See the mdlFile_setDefaultShare function documentation for more information.

MDL supports two functions for retrieving the value of an environment variable.
mdlSystem_getenv retrieves the value of a MicroStation environment variable, and
getenv retrieves the value of an operating system environment variable.

✍ The printf class of functions are no longer restricted to generating strings
of 600 bytes or less (as mentioned in the documentation for
mdlOutput_vprintf in previous versions of the MDL documentation).
Now there is no limit on the size of strings they can generate.

MDL supports ANSI standard format strings for the scanf and the printf classes of
functions. In addition to supporting all standard format specifiers, these functions also
support %w for working units.

A double-precision value must be supplied for the corresponding argument when the
working units format is used with one of the printf functions. These functions
generate a value in standard working units format (MU:SU:PU). Units are never
included in the generated value. If the # modifier is used, the generated value is in the
format specified in the Format field of the Coordinate Readout box. Based on this
setting, the generated string can contain only master units; master and secondary units;
or master, secondary and primary units. If the # modifier is not used, the generated
value always contains master, secondary and primary units. If a minimum width is
included in the format, the field is padded to that width. If padding is required, the
generated value is right justified in the field unless the format specification contains an
‘-’. This value indicates left justification. For example, the format string %-40w tells the
functions to generate a left justified working units specification with a minimum field
width of 40 characters.

When a format specifier is supplied to a scanf function, the corresponding argument
must point to a double-precision variable. The format of the data in the input stream or
string must be <value>:<value>:<value>. Each value can be an integer or floating
point number. Expressions are not permitted. The scanf functions can handle working
unit specifications generated by printf functions using the %w format without a #
modifier.
12-2 MicroStation MDL Programmer’s Reference Guide

Standard C Functions
ANSI Standard Functions
ANSI-Compliant Function Definition Files (.fdf)
The function prototypes for MDL-specific built-in functions (those listed in the MDL
Function Reference Manual) are in .fdf files in the mdl/include directory. The names of
these files correspond closely to the categories of MDL functions. For example, all of
the mdlElement_… functions are defined in mselemen.fdf, and all of the mdlOutput_…
functions are defined in msoutput.fdf.

While .fdf files can be included in both MDL source code and DLM source code, the
ANSI standard header files included with MDE can be included only in MDL code.
When compiling source for a DLM, use the ANSI header files provided with the native
C compiler.

The MDL compiler has built-in knowledge of all of the built-in functions, so it is not
necessary to use any of the .fdf files. However, the declarations provided in the .fdf
files are more complete than those built into the compiler, so the compiler can do
better type checking if the .fdf files are used.
MicroStation MDL Programmer’s Reference Guide 12-3

12-4 MicroStation MDL Programmer’s Reference Guide

13 MDL Built-In Variables
Several variables that are global to MicroStation are common to MDL
applications. These variable names and their types are known to the
MDL compiler and MDL programs may access them without declaring
them. However, as a convenience, MDL programs may declare them
as extern but may not change their type. A program can cast pointers
to other data types to point to these variables.
Variables
Many MDL built-in variables are structures or unions. While the MDL compiler knows
the variable’s name or the variable’s type name, it does not know the type definition.
Therefore, it cannot determine the variable components such as member names for
structures. For this reason, any built-in variable that is not a base type (such as int,
double or char) must have its type definition included before it is referenced. If a built-
in variable that is not a base type is referenced before it is defined, an incomplete
definition error will result at compile time. In the following table, if the variable has a
derived type, the name of the include file that contains the definition is specified.

Type Variable Description

short dgnBuf[] Current element during many MicroStation
operations, that can also be accessed from
User Commands.

MSStateData statedata Information that relates to the current state
function. It is defined in global.h.

Tcb *tcb All transient information about the current
design file and is defined in tcb.h.

Mgds_modes mgds_modes All mode information about the current
MicroStation execution and is defined in
global.h.

char mgdsPrompt[35] The prompt MicroStation writes in the
prompt field, which is uStn> by default.
Use mdlState_setKeyinPrompt to set the
prompt for one command.

short element_drawn[8] A bit mask, one bit per element type. Bit n
is set if element type n is a displayable
element.
MicroStation MDL Programmer’s Reference Guide 13-1

MDL Built-In Variables
Variables
In addition to these built-in variables, MDL has built-in variables that should be treated
as read-only. These variables are floating point constants that are frequently used.

✍ These constants are actually in writable memory. If their values are
accidentally changed, fatal errors will occur in MicroStation.

int mdlErrno Additional error status for various MDL
functions. The possible values are defined
in mdlerrs.h.

int errno Additional error status for various operating
system functions. MicroStation does not
generate the values. Instead, the native
operating system generates them.

MSGraphConfig graphConfig A description of the graphic configuration.
Defined in global.h.

long mdlCommandNumber The number of the most recently started
MDL application command.

Floating point
constant name

Value
Floating point
constant name

Value

fc_onehalf 0.5 fc_30 30.0

fc_zero 0.0 fc_60 60.0

fc_1 1.0 fc_90 90.0

fc_m1 -1.0 fc_180 180.0

fc_2 2.0 fc_270 270.0

fc_3 3.0 fc_360 360.0

fc_4 4.0 fc_750 750.0

fc_5 5.0 fc_1000 1000.0

fc_10 10.0 fc_10000 10000.0

fc_100 100.0 fc_100000 100000.0

fc_p1 0.1 fc_2pi 2.0*π
fc_p01 0.01 fc_epsilon 0.00001

fc_p001 0.001 fc_mm_per_in 25.40

fc_p0001 0.0001 fc_360000 360000.0

fc_pi p fc_iang_to_rad (π/180.0)/360000.0

fc_180overpi 180.0/π fc_rad_to_iang (180.0*360000.)/π
fc_piover180 π/180.0 fc_miang_to_rad -1.0*(π/180.0)/360000.0

fc_piover2 π/2.0 fc_rmaxi4 RMAXI4

Type Variable Description
13-2 MicroStation MDL Programmer’s Reference Guide

MDL Built-In Variables
Variables
fc_piover3 π/3.0 fc_rmini4 RMINI4

fc_piover4 π/4.0 fc_rmaxui4 RMAXUI4

fc_piover6 π/6.0 fc_tan30 0.5773502692

Floating point
constant name

Value
Floating point
constant name

Value
MicroStation MDL Programmer’s Reference Guide 13-3

13-4 MicroStation MDL Programmer’s Reference Guide

14 Sample MDL Applications
MicroStation provides a number of sample applications with MDL.
These examples are provided in subdirectories of the mdl\examples
directory. This chapter briefly describes these sample applications.
Examples
The mdl\examples\doc directory supplements this manual. The examples in this
directory illustrate how to use the built-in functions but do not add any functionality to
MicroStation. You are not likely to use these examples with MicroStation. Typically,
each source file in the module is self-contained. Each source file illustrates the
functions for a particular class of built-in functions. For example, the functions
beginning with the mdlSystem_… prefix are illustrated in the source file, system.mc.

The mdl\examples\misc directory contains small, complete examples. Typically, these
examples perform some functionality, but are not really useful.

The other subdirectories of MDL examples contain more complex examples. Some of
these examples implement extensions that MicroStation users have requested. These
examples illustrate fundamental concepts instead of just illustrating the calling
sequences of functions.

The example in mdl\examples\plashape illustrates many fundamental concepts
needed for commands that create new elements.

The example in mdl\examples\trumpet illustrates the use of the current
transformation and element descriptors.

The example in mdl\examples\chngtxt illustrates many fundamental concepts needed
for commands that modify existing elements.

The example in mdl\examples\rasticon illustrates many fundamental concepts needed
for applications that are started before MicroStation starts. It also illustrates how to use
MicroStation windows other than the standard MicroStation views. This application is
an icon editor used to create the icon menus provided with MicroStation.
MicroStation MDL Programmer’s Reference Guide 14-1

Sample MDL Applications
Building sample MDL applications
The examples in mdl\examples\calculat illustrate how to implement a preprocessor
for processing key-ins before MicroStation processes them. When this application is
installed, full C syntax can be used for entering MicroStation commands.

The other subdirectories of the mdl\examples directory also contain examples. They
also discuss fundamental concepts of MDL applications. These examples are
referenced throughout this manual in the areas where the concepts are introduced.

Building sample MDL applications
The MDL development tools, including a make utility, are in the directory, mdl\bin.
This directory must be in your path for the MDL utilities to execute.

The examples that have their own directories all have makefiles. To build one of these,
change your current directory to the directory that contains the example. Then run
BMAKE specifying the name of the application. The environment variable, MS, must
specify the root directory where MicroStation is installed. MS is not a MicroStation
environment variable. It is an operating system environment variable. If MicroStation is
installed in the \ustation directory, enter the following sequence of commands to build
the CHNGTXT application:

set MS=\ustation\
set BMAKE_OPT=-I\ustation\mdl\include
cd \ustation\mdl\examples\chngtxt
bmake chngtxt

Running MDL applications

➤ To run MDL applications from MicroStation

1. At the MicroStation prompt, key in MDL LOAD <application> to load
the application.

2. Select an application command by keying in either
MDL COMMAND <command name> or the application command.

3. Unload the MDL application by keying in MDL UNLOAD
<application> (an optional step). If further application commands
might be used, the application may remain loaded.

For example, to load the CHNGTXT example application, key in the following at the
MicroStation prompt: MDL LOAD chngtxt

The commands in the CHNGTXT example are CHANGE TEXT SINGLE, CHANGE
TEXT FENCE, CHANGE TEXT ALL and FENCE CHANGE TEXT. All of these
commands prompt for the string to be replaced and the replacement string; they then
edit text elements accordingly.
14-2 MicroStation MDL Programmer’s Reference Guide

Sample MDL Applications
dlogdemo MDL Example
The PLASHAPE example has a single command, PLASHAPE. This command expects
the user to enter data points to define the shape and then Reset when finished.

The RASTICON example has a dialog box interface. There are no commands.

The commands in the TRUMPET example are TRUMPET and MULTI. The application
does not have a command table, so the commands must be accessed through MDL
COMMAND. To run TRUMPET, key in MDL LOAD trumpet and then either MDL
COMMAND MULTI or MDL COMMAND trumpet. A 3D design file is required.

✍ The MDL Debugger can be used to step through the example applications
and the user’s own applications. The MS_DBGSOURCE environment variable
must be defined to point to the directory containing the .mc source file.
For example, to use the debugger with the CHNGTXT example, set
MS_DBGSOURCE to \ustation\mdl\examples\chngtxt\.

dlogdemo MDL Example
The dlogdemo MDL example is designed to demonstrate how the various aspects of
the MicroStation Dialog Box Manager work from a programming standpoint.
dlogdemo demonstrates all of the standard dialog items at least once. We recommend
that programmers who intend to utilize the Dialog Box Manager take the following
steps to familiarize themselves with its operation:

1. Experiment with MicroStation’s dialog boxes and tool palettes to get a
feel for the way they work. You can (and should) refer to the
documentation for details, but because a large part of the effort that
“figure things out” without documentation, you may want to try
learning without a manual on occasion.

2. Scan chapter 7 of MDL manual, which introduces several important
concepts of the dialog box manager architecture.

3. Compile, load, and experiment with the basic, dlogdemo and
rasticon examples. To compile each, change the default directory
appropriately:

Basic: \ustation\mdl\examples\basic

Dlogdemo: \ustation\mdl\examples\dlogdemo

Chngtxt: \ustation\mdl\examples\chngtxt

Then issue the appropriate make command, such as bmake dlogdemo for dlogdemo.
To load each application, enter MicroStation and key in MDL LOAD <application>.
Note that the make programs will place the completed application (with .ma
MicroStation MDL Programmer’s Reference Guide 14-3

Sample MDL Applications
chngtxt MDL Example
extension) in the \ustation\mdlapps directory. The environment variable MS_MDL
should point to this directory by default, so it should not be necessary to specify a path
when loading the applications.

An alternate method of loading the applications is to choose MDL Applications from
the User pull-down menu to open the MDL settings box. Then select the application
and click the Load button.

4. Briefly examine the source files in each directory. Note that the basic
application demonstrates a compact application and some important
concepts involving modal and non-modal dialog boxes. The
dlogdemo application illustrates all of the standard dialog box items.
dlogdemo is not a good example of a user interface, but rather an
attempt to demonstrate how all of the standard dialog manager items
are implemented, and how they can interact. The files that are used to
construct this example have many comments embedded in them to
explain how they work. This example may in some cases act as a
“programming template” for new application dialog boxes. The
rasticon application illustrates the use of the dialog box manager in a
more realistic fashion, including advanced concepts such as the
“generic” item. It is also the application you will want to utilize when
you create your own icons for your applications.

5. Re-read “Dialog Box Manager Overview” on page 15-1. Keep in mind
that the best example of user interface design is MicroStation itself.
Any and all of the techniques and tools used in MicroStation’s user
interface are available to application programs, as well as
MicroStation’s native dialog boxes. As you start creating hook
functions, refer to the “Dialog Box Manager” chapter of the
MicroStation MDL Function Reference Manual for descriptions of the
built-in functions provided by the Dialog Box Manager.

chngtxt MDL Example
The chngtxt MDL example is designed to demonstrate how various aspects of the
element location and modification programming capabilities are utilized. chngtxt
demonstrates how to perform element selection based with user assistance (single
element, selection set, and fence) and without user assistance (all elements) as well as
modifying the elements which were selected. This example also uses simple dialog box
operations to start commands as well as setting control variables as well as creating
new commands the user can key into the Command Window.

We recommend that programmers who intend to utilize this functionality take the
following steps to familiarize themselves with its operation:
14-4 MicroStation MDL Programmer’s Reference Guide

Sample MDL Applications
chngtxt MDL Example
1. Compile the application from the \ustation\mdl\examples\chngtxt
directory and then run it run within MicroStation using the MDL
LOAD CHNGTXT command. Commands can be either keyed into the
Command Window or selected from the Chngtxt dialog box menu bar.
The programmer has the ability to change the text associated with a
text element or text node element for a single element, all elements in
a selection set, all elements meeting the current fence selection
criteria, or all elements within the design file.

2. Review “Dialog Box Manager Overview” on page 15-1 to become
more familiar with the standard C functios provided by MDL and the
Dialog Box Manager functionality available to the application
program.

3. Review “Building sample MDL applications” on page 14-2, loading
into MicroStation, and how each command is associated with an
application function to implement that command.

4. Examine the source file associated with this application to see exactly
how this application performs the operations on the design file. Refer
to the MicroStation MDL Function Reference Manual for additional
information about the functions used by this application.
MicroStation MDL Programmer’s Reference Guide 14-5

14-6 MicroStation MDL Programmer’s Reference Guide

15 Dialog Box Manager Overview
The MicroStation dialog box manager controls the operation of dialog
boxes in the rectangular windows on the screen that accept and
process user input. Dialog boxes contain dialog items, which are on-
screen graphical entities the user manipulates to change an
application’s variables. The MicroStation dialog box manager
implements the standard dialog box items that are common to
graphical user interfaces.
Overview
MicroStation’s entire graphical user interface, including over 120 dialog boxes and 2000
dialog box items, was implemented using the MicroStation dialog box manager.

Dialog boxes and dialog box items are usually defined in resource compiler ASCII
source files. Changes in dialog box details can then be incorporated into an application
with only a resource compile and link. In these cases, a full recompile and relink of an
application’s MDL source files is not necessary. In addition, items can be dynamically
added, removed, set and hidden at run-time by calling dialog box manager library
functions.

The MicroStation dialog box manager is “application aware.” It can directly modify
application state variables, using only information specified in a resource file. As a
result, a large part of the interaction between the dialog box manager and client
application is specified by defining data, not by writing program code. Other window
systems force the programmer to write a support function for every type of user action.

Sometimes a dialog box item is too complex to be specified in a resource file. In such
cases, the default behavior of an item can be changed or enhanced by attaching a hook
function to that item. Using techniques described in this manual, the MicroStation
dialog box programmer can write dialog and item hook functions that customize the
behavior of the dialog box manager.

The next section in this chapter discusses those features of the MicroStation dialog box
manager that set it apart from other graphical user interface programming systems. The
remainder of the chapter explains concepts that need to be clearly understood when
creating MDL applications that use the dialog box manager.

The “Standard Dialog Box Items” on page 16-1discusses all of the dialog box items
supported by the dialog box manager.
MicroStation MDL Programmer’s Reference Guide 15-1

Dialog Box Manager Overview
Features
The “Dialog Box Manager Hook Functions” on page 17-1 discusses the structure of
dialog and item hook functions and the messages that can be sent to each.

The “A Complete Example” on page 18-1 steps you through a complete example of an
MDL application that opens a dialog box.

The “Dialog Box Style Guidelines” on page 19-1 contains dialog box style guidelines,
hints on debugging dialog boxes, and general techniques useful when creating dialog
boxes.

“Dialog Box Manager Functions” in the MicroStation MDL Function Reference Manual
describes all of the MDL library functions relating to the dialog box manager.

Features
The MicroStation dialog box manager incorporates many features that distinguish it
from other graphical user interface programming systems. This section discusses these
unique features and how they benefit MDL dialog box programmers.

Application aware dialog items
Regardless of the underlying programming system being used, details about the items
in the dialog box must be specified when creating a dialog box. MicroStation’s dialog
box manager is unique because the specification of a dialog box item can include
detailed application knowledge. The dialog box manager item handlers, which
implement the actual functionality of dialog box items, can use this information to
modify an application variable without further effort by an MDL dialog box
programmer.

For example, when a toggle button (also known as a check box or check button) is
defined in a resource file, an application variable can be specified to determine
whether the toggle button is on or off. When the user changes the state of the toggle
button on the screen, the dialog box manager also changes the application variable. A
MicroStation command, also defined as part of the item specification, can be placed in
the input queue at this time. No program code needs to be written to support these
actions.

Therefore, fully functional dialog boxes can be produced without any MDL
programming at all, simply by defining dialog box item resources. These resources can
be quickly created by copying existing item specifications and then modifying the copy
to suit the new requirements.
15-2 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Overview
Advanced functionality
Advanced functionality
MicroStation’s dialog box items are highly comprehensive, and reduce the tasks of the
programmer in a variety of ways. For example:

• Text items, which allow the user to enter text strings, can
automatically ensure that the string is in range. Other systems require
that a programmer write explicit range checking code for every text
item that needs it.

• The color picker item makes it easy to let the user select a color by
picking it from an array of choices.

• The tool palette item makes it easy to create a “floating tool palette”
with tear off sub-palettes and “slam-down” items attached to
individual icon tools.

Many situations require giving the end-user multiple means for accessing and
modifying a particular setting. Sometimes, users are more comfortable with typing in
the new value for a parameter. At other times, they want several choices when
changing the setting. It also may be desirable to create a different dialog box that
changes the setting-though the setting can already be changed with an existing dialog
box. By using a synonym resource, the MicroStation dialog box manager can correctly
change the appearance of the appropriate dialog box items no matter what dialog box
they appear in. Synonym resources are discussed in detail in a later section.

Reusable dialog items
The MicroStation dialog box manager separates an item’s “item list specification”
(which mainly contains position information) from its “item resource specification”
(which contains the “intelligence” of the item, including its application knowledge).
This separation allows a single item resource specification to be reused in multiple
dialog boxes and requires only the changing of the positioning information.

To use an existing dialog item in a different dialog box, only its resource type and
resource ID are required. No knowledge of the contents of its item resource
specification is needed. In particular, some of the items defined within MicroStation’s
resource files can be used by other applications. The “OK” and “Cancel” push buttons
are good examples of dialog items defined in MicroStation’s resource files that are
reused extensively by other applications.

Flexible architecture
Usually, the more powerful dialog item handlers are, the less flexible they become. If
the default behavior of an item is appropriate in a specific instance, it is not likely to be
appropriate in many other situations. To counteract this problem, MicroStation’s dialog
box manager lets a programmer gain control at a low level and “defeat” (enhance) the
MicroStation MDL Programmer’s Reference Guide 15-3

Dialog Box Manager Overview
No complicated input loop
manager’s default processing. Usually, the default behavior is correct because so much
application-specific behavior can be specified within a dialog item. But when the need
arises, the MDL dialog box programmer can create and attach dialog and item hook
functions to a dialog box or dialog item to gain more control of special situations.

Typically, hook functions are required when:

• The appearance of an item cannot be determined from the state of a
single application variable.
OR

• When it is necessary for changes in the state of one item to cause
complex changes in several other dialog items.

The generic item allows for the creation of a custom dialog item without requiring the
construction of a dialog item handler. The MDL programmer has control over the
appearance of a generic item and its response to mouse and keyboard events.

Since item handlers are separate loadable modules, changes can be shipped in small
files without having to deliver an entirely new version of MicroStation. As new or
updated item handlers are developed, software developers will be able to incorporate
them easily for use with their applications.

No complicated input loop
An MDL dialog box application does not contain an input loop, since the MicroStation
dialog box manager’s internal input loop sends events directly to the appropriate item
or dialog box. Hook functions, which can be attached to dialog boxes or dialog items
to modify their default behavior, are therefore independent from each other and easier
to write. These hook functions don’t need to know about the existence or behavior of
other dialog boxes or items to perform their work. They don’t need to have switch
statements that require information on all of the dialog boxes present in an application
or all the items within a dialog box. This results in more modular functions and an
easier to maintain application.

In addition, the MDL dialog box manager handles events for system controls internally.
The MDL dialog box programmer need not be concerned with the management of
extraneous events that can and should be handled automatically.

Fast prototyping
Since functional dialog boxes can be specified mainly in resource files, the prototype
phase of program design can be completed very efficiently. For each successive design
and test iteration, the resource compiler need only compile one small resource file in
the entire application does not have to be recompiled or linked. Any program code can
be kept to a minimum at this stage.
15-4 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Overview
Portable across multiple hardware platforms
Because the resource syntax is virtually standard C data definitions, with the full power
of the C-like pre-processor, programmers will find it easy to learn and use. The pre-
processor #define directive is used extensively when specifying dialog item positions
and sizes. This allows quick modifications to the position or size of multiple items by
changing a single constant. The MDL pre-processor and the powerful basic interface
components, combined with fast turnaround, results in a very effective prototyping
tool.

In fact, dialog boxes can be designed by end-users unfamiliar with programming. The
end-users can lay out the look and feel of the user interface for an application, while
programmers simultaneously write the underlying processing code.

Portable across multiple hardware platforms
Because MDL portability is a primary design criterion for MicroStation, it is possible to
convert most MDL applications to any platform that MicroStation supports with little
effort. The programmer does not have to rewrite any program code or recreate any
dialog box resources. The user interface portion of MicroStation and other in-house
applications were developed with the same tools that are available to any application
developer. These applications typically only require a recompilation and a link to run
on different hardware platforms, and to retain their look and feel on different
platforms.

User interface independent
The dialog box manager is interface independent. Your application can use any MDL
dialog function, and the dialogs (and items in them) that are created will automatically
conform to the platform-specific interface and the user preference settings. You, as a
developer, need not worry if the GUI in use is Motif, Microsoft Windows, Macintosh, X-
Windows, or other standard. The dialog box manager will handle the specifics for you.

Designed for internationalization
Applications can be designed with all of their text strings placed in a separate resource
source file. Only this file needs to be translated to convert dialog box item labels and
application messages to a different language. Program source code does not have to be
supplied to translators. This protects proprietary information, while also making it easy
to locate what needs to be translated.
MicroStation MDL Programmer’s Reference Guide 15-5

Dialog Box Manager Overview
Dialog Box Manager Basic Concepts
Dialog Box Manager Basic Concepts

MicroStation windows
A window is a rectangular area of the screen that has a distinctive border or window
frame. Windows are the visible areas of the screen where an application interfaces with
the user.

Most windows have a title bar across the top. On the left side of the title bar is the
optional window menu button. When a user presses this button, the pull-down
window menu displays. The window menu button and window menu are also
known as the system menu button and the system menu. The contents of the window
menu are fixed and cannot be changed by an MDL programmer. On the right side of
the title bar are the optional window control buttons. These provide a short-cut for
invoking actions contained in the window menu without having to pull it down.

A user can change the size of a window with window resize borders.

The part of a window that is within the border or frame is known as the content area
or client area.

There are two types of windows that can be used with MicroStation: view windows
and dialog box windows. Several different operations can be performed on
MicroStation windows, whether views or dialog boxes. See “Graphic Functions” in the
MicroStation MDL Function Reference Manual for more information on window related
functions.

MicroStation view windows

MicroStation view windows allow the user to display and change design files. A pointer
to a view window can be obtained by calling mdlWindow_viewWindowGet.

MicroStation dialog box windows and dialog items

MicroStation dialog box windows are windows that can contain dialog items. A dialog
item is a user interface control that allows the user to change application settings or
invoke application commands by directly modifying on-screen graphical entities.
Typically, dialog items look and act like their real world counterparts, so users can
intuit how to operate them. A toggle button, for example, looks and acts like the push-
in toggle switches on stereo equipment. Remember that since a dialog box is a type of
MicroStation window, any operation that can be performed on a window using the
mdlWindow_… functions can also be performed on a dialog box.

Prior to Version 5.5, view windows could not contain dialog items. However, with the
release of Version 5.5, view windows now have dialog box items on the right and
bottom borders.
15-6 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Overview
Resources
Resources
A resource is application data that has a programmer defined format (a resource type),
is stored in a file (a resource file), and is accessed by specifying an identifying long
integer (a resource ID).

The resource manager is essentially a database manager used for manipulating
application data. Programmers can define their own data structures and store them in a
resource file. These resources can then be accessed by specifying the resource type
and resource ID of the data they wish to use. The dialog box manager makes extensive
use of resources and the resource manager to partition off the “user interface look” part
of an application from its underlying implementation. In fact, the resource compiler,
resource librarian, and resource manager were all created to handle issues brought up
during the design stage of the dialog box manager.

By specifying all aspects of the look of an application in resources within a resource
file, specific details of the user interface can be changed without rewriting application
code. For example, customization for foreign languages involves only the shipment of
a different resource file with new text strings; the base application does not have to be
modified in any way.

The use of resources also speeds the design of application user interfaces. Changing
dialog boxes typically involves only the recompiling of the involved resources, not a
recompile and link of the entire application. This allows prototyping to proceed at a
rapid pace. Much of the look and feel of an application can be developed before any
of the actual implementation begins.

Also, since resources normally reside on disk, they reduce the run-time memory
requirements of an application.

To gain complete portability, MicroStation uses its own resource file format that is
essentially the C syntax for initializing data structures. Once the resource file that
specifies a dialog box is written for one platform, it can be recompiled without change
for use on a different platform.

Each occurrence of a particular resource type used by an MDL application should have
its own unique resource ID. For example, in a given application, there can only be one
resource whose resource type is RTYPE_DialogBox (defined to be dBox) and whose
resource ID is 1.

The dialog box manager searches MicroStation’s resource files whenever a related
resource cannot be found in an application’s open resource files. An MDL application
can therefore use any of MicroStation’s dialog box manager related resources (such as
the dialog items present in MicroStation’s dialog boxes). To allow this capability
without creating resource ID conflicts with other developers, all of MicroStation’s built-
in resources have negative resource ID numbers. These resource IDs are defined in the
header file dlogids.h. Other developers should use only positive resource ID numbers.
MicroStation MDL Programmer’s Reference Guide 15-7

Dialog Box Manager Overview
Dialog item resource specifications and item list specifications
Resource ID numbers should be defined in their own .h file. This file will then be
included in both an application’s resource files, and in its MDL program files that need
to refer to specific item IDs.

See “Resources” and “Resource Management Functions” in the MicroStation MDL
Function Reference Manual for more information about the MicroStation resource
manager.

Dialog item resource specifications and item list specifications
The dialog box manager design allows dialog items to be reusable. To accomplish that
goal, a dialog box item is composed of two separate pieces: a dialog item resource
specification and a dialog item list specification.

A dialog item resource specification contains the complete behavioral description of
an item and is uniquely identified by the combination of its resource type and resource
ID. Other item information includes:

• The text string label associated with the item.

• Numbers used to find a description of the item in MicroStation’s help
system.

• A string that indicates what application variable to control.

The item’s location within a particular dialog box is not specified. Therefore, the same
item can be used and placed in different dialog boxes by referencing its resource type
and resource ID. It will look the same and affect application variables identically in
each instance.

There is one item list per dialog, and each item within a dialog box has an entry in that
list - a dialog item list specification. A dialog item list specification not only specifies
the resource type and resource ID of the item to include in the dialog box, but also its
position and size. Most other user interface toolkits pack positioning information with
other item information in their item lists, thus preventing the item’s reuse in a different
dialog box. See “DialogItemRsc Structure” on page 16-6 for more information on dialog
item lists.

Sometimes most of an item’s resource specification is usable in another situation,
except for a small portion, such as the item’s label or the string that specifies which
application variable to control. To handle those situations, the dialog box manager
allows for overriding of certain item resource specification fields with information
specified in the item list. Currently it is possible to override an item’s label or access
string with item list specifications. For example, the standard MicroStation toggle
button item that controls the TCB grid lock variable could be included in a dialog box
and labeled “Lock cursor to grid” instead of “Grid Lock.”
15-8 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Overview
Dialog item state: internal value versus external state
The file dlogids.h contains the resource IDs of all of the dialog items that are used in
MicroStation. Most of these items can be used in a dialog box simply by including the
proper resource type and the listed resource ID in the dialog’s item list. The
programmer does not have to specify the details of the item’s resource specification.
MicroStation’s predefined resource for that item will automatically be used.

Dialog item state: internal value versus external state
The state of a dialog box item is composed of two parts: the item’s internal value and
the item’s external state.

An item’s internal value is the simple C variable, hidden within the item’s private data
structures, which is referenced whenever the item needs to be displayed. Currently all
items, except the text item, keep their values in signed long integers. The text item
keeps its internal value as a NULL terminated string. For example, a toggle button is
implemented with a hidden variable that can be either 0 or 1, indicating whether the
toggle button is currently depressed or not. MDL dialog box manager functions exist to
get or set an item’s internal value.

An item’s external state is the value of the application data that the item controls. For
example, suppose a toggle button controls the TCB variable for grid lock,
tcb->control.grid_lock. In this case, the item’s external state matches the value of
tcb->control.grid_lock. The application data that determines an item’s external state
is not necessarily a simple C variable. With hook functions, which are discussed later, it
is possible to consider multiple pieces of data as the item’s state. There are MDL dialog
box functions to get or set an item’s external state.

Since items are used to graphically depict the state of application data in an intuitive
way, an item’s internal (and therefore displayed) value usually matches its external
state. When an item is initially created, the item’s external state is retrieved and the
internal state is set accordingly. The item’s initial appearance thus matches the state of
the application data being controlled. Whenever the user interacts with an item,
changing its appearance and therefore its internal value, the item’s external state is also
updated to reflect the change.

An item’s internal value and external state thus represent two different parts of an
item’s state. The internal value represents the state of the item’s appearance on the
screen. The external state represents what the application thinks the item’s state should
be. In “Modeless and modal dialog boxes” on page 15-10 and “Item synchronization”
on page 15-12, it is important to understand this distinction.
MicroStation MDL Programmer’s Reference Guide 15-9

Dialog Box Manager Overview
Referencing Application Variables from Resource Files
Referencing Application Variables from Resource Files
Among the information that can be included in an item resource specification is a
string that determines which application variable the item controls.

The application variable underlying a particular item is specified in the accessStr field
of the item resource specification. accessStr is a NULL terminated string containing a C
expression that, when evaluated at run-time, results in a variable reference. See
“Generating Resource Files from C Type Definitions” on page 7-17 for a general
discussion of MDL’s special facility for evaluating C expression strings at run-time. This
facility allows the specification in a resource file of how that item affects application
data.

For a C expression to be evaluated at run-time, any variables that are referenced must
be published with one of the mdlDialog_publish… functions. (The lower level
mdlCExpression_symbolPublish function can also be called, but the
mdlDialog_publish… functions are easier to use.) In addition, if any variable is a
structure or a pointer to a structure, the mdlDialog_publish… functions require that
type declaration resources exist for that structure in an open resource file. Type
declaration resources contain detailed information about a structure that allow it to be
analyzed at run-time. The rsctype utility program converts standard C structure
declarations that are #included in a type definition file, commonly known as a .mt file,
into type declaration resources. See “Generating Resource Files from C Type
Definitions” on page 7-17 for more information on the rsctype utility and generating
type declaration resources.

An underlying application variable is the application defined variable that a dialog
item directly controls and that determines an item’s external state. By using C
expression strings in an item resource specification, the underlying application variable
can be automatically modified by the dialog box manager whenever the internal value
of an item changes (whether from user interaction with the item or from calls to MDL
functions). Usually, no program code is necessary to have the item’s appearance match
the state of an item’s underlying application variable.

Modeless and modal dialog boxes
Modeless dialog boxes allow the user to interact with other dialog boxes. Operations
such as drawing, modification of items in other dialogs, and keying in MicroStation
commands can occur while a modeless dialog is displayed. MicroStation’s Command
window and the Element Attributes dialog box are examples of modeless dialog boxes.

While a modal dialog box is displayed, all user interactions must be focused within
that single dialog. The dialog box manager will ignore mouse presses that occur while
the cursor is outside a modal dialog box. Modal dialog boxes do not have window
menu buttons on the left side of the title bar or window control buttons on the right
side. MicroStation’s Preferences dialog box is an example of a modal dialog box. Modal
15-10 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Overview
Modeless and modal dialog boxes
dialog boxes are used when an application must have some information before it can
continue, or a complete set of information must be entered before other actions can be
taken.

Push button items are used to dismiss modal dialog boxes or possibly to launch
another modal dialog box for more information. When dismissing a modal dialog box,
users can accept the changes they have made to items within a modal dialog box by
pressing a push button that is usually labeled “OK.” Alternatively, users can discard any
changes they have made to the items in a modal dialog box by pressing a push button
that is usually labeled “Cancel.” All modal dialog boxes should include one or both of
the push buttons whose resource IDs are PUSHBUTTONID_OK or PUSHBUTTONID_Cancel.
These predefined buttons automatically take care of all the details needed to dismiss a
modal dialog box.

To implement the behavior associated with the Cancel and OK push buttons, the items
in a modal dialog have their internal values decoupled from their external states.
Changing the on-screen appearance of an item in a modal dialog box does not usually
change the application variable that the item controls. No action is necessary to discard
the changes to items within a modal dialog box because the application variables
associated with the items have not been modified. However, when the user accepts the
changes in the appearance of the items in a modal dialog box by clicking the OK push
button, the dialog box manager must force the external state of each item to match the
item’s internal value.

Modal dialog boxes can be invoked in two different ways, by using the standard
mdlDialog_open function or by using mdlDialog_openModal. The
mdlDialog_openModal function does not return control to its caller until the user has
dismissed the dialog box. The first argument of the mdlDialog_openModal function
indicates which button the user pressed when dismissing the dialog box. An
application should call mdlDialog_openModal when it needs more information from
the user before it can continue processing.

A modal dialog box opened with mdlDialog_open must be handled differently. The
mdlDialog_open function returns immediately to its callerÑit does not wait until the
user has dismissed the dialog box. To determine which type of button was pressed to
dismiss the modal dialog box, a dialog hook function must be attached to the dialog
box. The DIALOG_MESSAGE_DESTROY message is sent when the dialog is dismissed, and
the actionType field of that message indicates which button was pressed. An
application should call mdlDialog_open when a complete set of information must be
entered before other actions can be invoked, but the information is not needed
immediately.

A modal dialog box should have the DIALOGATTR_MODAL bit set in the attributes field of
its dialog box resource specification. See “DialogBoxRsc Structure” on page 16-2 for
more information on the attributes field.
MicroStation MDL Programmer’s Reference Guide 15-11

Dialog Box Manager Overview
Item synchronization
Item synchronization
An item’s state has two parts as discussed in “Dialog item state: internal value versus
external state.” An item is synchronized when the item’s internal value (and
appearance) is forced to match the item’s external state. In other words, after
synchronization, the item’s appearance on the screen is guaranteed to match the
application data the item represents.

Synonym resources
In certain situations, a change in the external state of one item requires the
simultaneous change in the appearance (and consequently the internal state) of other
items. Synonym resources can perform this simultaneous change.

Synonym resources are simply a list of items, where each item is specified by its
resource type and resource ID. Some items (such as toggle buttons, text and option
buttons) can have a synonym resource ID contained in their resource item
specifications. Whenever one of those item’s external state changes, a synchronize
message is sent to all the items contained in its associated synonym resource. This
forces the synonym resource item’s appearances to match the state of the application
variable they control.

For example, MicroStation’s Element Attributes dialog box has two dialog items in it,
both of which give a different view of the active element color (both are “synonyms”
for the active element color). These are the text and color picker items next to the
“Color:” label. Whenever either one changes the active element color, the other item
must reflect that change. Both items are associated with the following synonym
resource:

DItem_SynonymsRsc SYNONYMID_ElementColor=
{

{
{Text, TEXTID_ElementColor},
{ColorPicker, COLORPICKERID_ElementColor},

}
};

Therefore, when the text item is used to change the active element color, a synchronize
message is sent to the color picker item. The color picker item’s appearance will be
forced to match the application variable the item controlsÑin this case, the active
element color. The result is that when the text item changes the active element color,
the color picker’s appearance will also automatically be changed. A similar sequence of
events will occur if the color picker is used to change the active element color.

Remember that when a dialog box is modal, its items’ states remain unchanged until
the user selects the “OK” push button. If synonym resource lists need to be used within
a modal dialog box, the DIALOGATTR_ALWAYSSETSTATE bit must be set in the attributes
15-12 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Overview
Keyboard focus
field of the dialog box resource. Here, special handling must be performed if the
normal “Cancel” push button behavior (to not modify any the dialog box’s underlying
application variables) is needed. The values of the application variables affected by the
dialog box must be stored somewhere when the dialog box is first opened, and then
restored if the user activates the “Cancel” push button. These actions can be performed
by a dialog hook function that handles the DIALOG_MESSAGE_CREATE and
DIALOG_MESSAGE_DESTROY messages.

Keyboard focus
The dialog item that is currently processing user keystrokes is called the keyboard
focus item or input focus item. The current keyboard focus item is visibly
distinguishable in some way. For example, a text item with the keyboard focus
contains the text cursor and a scroll bar of a list box item with the keyboard focus is
darkened. When a dialog item becomes the item that receives user keystrokes, it is said
to gain the focus. When the focus moves to another item, the first focus item is said to
lose the focus. Not all dialog items can process user keystrokes. These items are said to
be unable to accept the keyboard focus. An item that can accept the keyboard focus is
said to be focusable.

A focusable dialog item can validate its contents before it gives up the keyboard focus.
If the user has typed in an invalid string, the item can refuse to lose the focus. If the
contents are invalid, a focusable item will typically beep and reset its contents to the
previous valid value.

The dialog box that contains the keyboard focus item is called the keyboard focus
dialog box.

MicroStation will usually move the keyboard focus to the MicroStation Command
Window when the user clicks in a window that doesn’t contain any focusable items
(such as view windows). This action is called keyboard focus auto-switching.
Keyboard focus auto-switching prevents the inadvertent modification of dialog items
when the user is switching between modifying dialog items, performing drawing
actions, and keying-in application commands. Dialog boxes can optionally turn off
auto-switching if automatically moving the keyboard focus to the command window is
not desired by setting the DIALOGATTR_NOAUTOSWITCH.

Sinking dialog boxes
Most modeless dialog boxes should have the DIALOGATTR_SINKABLE bit set in the
attributes field of their dialog box resource specifications. See “DialogBoxRsc Structure”
on page 16-2 for more information on the attributes field. A sinkable dialog box can be
sent behind view windows by the user, and has a sink icon in the right side of its title
bar. When a dialog box is “sunk,” any overlapping view windows will obscure the
dialog box.
MicroStation MDL Programmer’s Reference Guide 15-13

Dialog Box Manager Overview
Specifying coordinates
Normally, modeless dialog boxes “float” in front of all view windows. It is usually
impossible to bring a view window in front of a dialog box, and view windows never
obscure dialog boxes. MicroStation is set up this way so the user can always see
MicroStation’s current settings. Dialog boxes, however, can be large and obscure too
much of the view windows into the design file. In these cases, it is convenient to allow
the user to sink a dialog box. The dialog box is not closed, and usually the layout of
the windows can be arranged so the important parts of the dialog box are still visible.
If the user needs to see the full dialog box again, clicking on any visible part of the
dialog box border will “unsink” it and bring it to the front of all the windows.

The only modeless dialog boxes that should not be sinkable are those that contain tool
palettes. Tool palettes should always float above the view windows.

Specifying coordinates
Positions of items within dialog boxes are specified in local coordinates. The local
coordinate system has its origin in the upper left corner of the content area of a dialog
box. Y values increase as one moves toward the bottom of a dialog box.

Two different units specify the locations and sizes of dialog boxes and dialog items:
pixel units and dialog coordinate units. Pixel units correspond to actual screen
pixels. A dialog coordinate unit is 1/12 of a dialog box’s current font height.

Locations and sizes in resource files are always specified in dialog coordinate units, not
pixels. By using dialog coordinates, items will be correctly placed and sized when the
user changes the size of the dialog font, or moves the dialog to a screen that has a
different font size associated with it. Each screen can have a different font size to
handle different screen resolutions. Otherwise, a dialog box that looks fine on a
640 x 480 pixels screen will look too small on a 1280 x 1024 screen. In this case, the
user will probably desire a larger font on the second screen.

To make specifying coordinates in terms of characters easier, three constants are
defined in dlogbox.h:

#define DCOORD_RESOLUTION 12
#define XC (DCOORD_RESOLUTION/2)
#define YC DCOORD_RESOLUTION

XC can be thought of as the approximate width of one character, and YC as one
character height. The formulas for computing dialog dimensions are as follows:

Dialog width = charWidth * XC * FontPixelHeight/DCOORD_RESOLUTION
Dialog height = charHeight * YC * FontPixelHeight/
DCOORD_RESOLUTION

For example, suppose that screen 0 has a dialog font that is 10 pixels high, and screen
1 has a dialog font that is 18 pixels high. In a resource file, a dialog is defined to have
15-14 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Overview
Specifying coordinates
a width of 20*XC and a height of 10*YC. In other words, the dialog will be about 20
“characters” wide and about 10 “characters” tall. On screen 0 the dialog will be 100
pixels wide (20 * 12/2 * 10/12 = 100) and 100 pixels tall (10 * 12 * 10/12 = 100). On
screen 1, with the larger dialog font, the dialog will be 120 pixels wide (20 * 12/2 * 18/
12 = 120) and 180 pixels tall (10 * 12 * 18/12 = 180). Notice that the pixel width and
height of the dialog is the same though different numbers of characters were specified.
This is because the definition of XC assumes that a character is half as wide as it is tall.

The GENY macro, defined in dlogbox.h, can be used to convert row numbers to y
dialog coordinates. This is useful if there are arranged dialog items. For example,
specifying GENY(1) for the y coordinate of one item, and then GENY(2) for a second
item will properly vertically position the two items, with an appropriate gap between
them. The GENY macro is an example of using a C macro to aid in dialog box
construction. Other macros can be created based on GENY if a different spacing scheme
is needed.

If the dialog font is 12 pixels high, there is a one-to-one correspondence between
dialog coordinates and pixels.

When using dialog box manager calls to perform drawing operations, positions and
sizes are usually specified in pixels (not the dialog coordinates used in resource files).

All references to a point use the Point2d structure. All references to a rectangle use the
BSIRect structure. Note that these structures use long ints to specify positions. The
sextent structure by contrast uses shorts. It uses shorts to save space in resource files
where it is used to specify the location of dialog items. Be careful not to do the
following:

rect.origin = sextent.origin;

This must be done instead:

rect.origin.x = sextent.origin.x;
rect.origin.y = sextent.origin.y;

These data structures are defined in basetypes.h.

Global coordinates are used to indicate the actual position of a pixel on the screen.
The origin of the global coordinate system is the upper-left corner of the screen. Y
values increase as one moves toward the bottom of the screen. A screen number must
always be specified when drawing directly to the screen.

✍ The BSIRect structure was previously called Rectangle, however, the
rectangle name conflicts with a structure name in Windows NT, so for
MDL we renamed Rectangle to BSIRect.
MicroStation MDL Programmer’s Reference Guide 15-15

Dialog Box Manager Overview
Text font
Text font
All dialog boxes have a current font associated with them. Whenever the width of a
character or a string is determined or text is drawn, the dialog box manager uses the
current font.

Fonts are specified by a font index. For each screen, MicroStation stores several
different font specifications for predefined purposes. For dialog boxes, only two fonts
are of interest: those specified by the indexes FONT_INDEX_DIALOG and
FONT_INDEX_BOLD. FONT_INDEX_DIALOG is the font index of the standard dialog font and
FONT_INDEX_BOLD is the font index of the standard bold dialog font.

Color
Several dialog box manager built-in functions allow the specification of a colorIndex.
This is not a direct reference to the MicroStation color table. Instead, it is an index into
an array that locates the position within the MicroStation color table of 12 standard
colors. See msdefs.h for a list of all the predefined colors.

Most dialog box programmers will not directly draw into a dialog box. If they do, they
will mainly be using WHITE_INDEX, LGREY_INDEX, DGREY_INDEX and BLACK_INDEX.

The mdlWindow_lineStyleSet function allows the specification of a direct index into
the current design file’s color table. It should only be used in very special
circumstances (like color picker dialogs). See “Graphic Functions” in the MicroStation
MDL Function Reference Manual for more information on drawing with color.

The dialog box manager’s internal architecture
Three major sub-systems within MicroStation handle dialog boxes: the dialog box
manager functions, the item handler functions, and MDL programmer-supplied hook
functions.

The sub-systems communicate by sending various messages. A message is a data
structure that has a header that indicates the type of message and a union of additional
information that depends on the message type. A function that is used to receive
messages gets one and only one argument passed to it: a pointer to a message
structure. It replies by setting various fields in the message itself.

All user interaction and most programmer interaction with a dialog box first goes
through a dialog box manager routine. The dialog box manager routines control the
general flow of user interaction with the dialogs. These routines know the basic
information about a dialog box such as its position and size, and the position, size, and
type of items within the dialog box. In particular, these routines have access to an array
of DialogItem that is contained in memory for each dialog box. See “DialogItemRsc
Structure” on page 16-6 for more information. The dialog box manager routines have
15-16 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Overview
The dialog box manager’s internal architecture
no knowledge about the details of specific dialog item types. That knowledge is
contained in the dialog item handlers.

A dialog item handler is a loadable MDL module that contains all the default
functionality associated with a type of dialog item. Every dialog item has a resource
type associated with it. This type is used to specify a structure that is initialized in a
resource file-the item resource specification. It also determines which item handler will
be sent messages when the dialog box manager routines need to manipulate the item.

The item handler for a dialog item type knows how to create, destroy, draw, move,
resize, get the value of, and set the value of that type of item. If applicable, it also
knows how to respond to mouse button presses or releases inside the item, or how to
accept keystrokes. If the item type can automatically control an application variable,
the item handler knows how to get and set the item’s external state.

A hook function is an MDL programmer-written function that can be used to modify
the default behavior of the dialog box manager functions and the item handler
functions. A hook function can be attached to a dialog box, in which case it is a dialog
hook function, or to an individual dialog item, in which case it is an item hook
function. Item hook functions are generally used to implement inter-item
communications, where changing the state of one item requires the simultaneous
complex change of other items. Keep in mind that this situation can sometimes also be
handled by the judicious use of synonym resources. Dialog hook functions are usually
used to allocate and initialize data structures that will be used throughout the life of a
dialog box by certain dialog items.

Generally, some user action will cause the dialog box manager to send a message to
the appropriate item handler with an indication of which specific item is to receive the
message. The item handler can then optionally pass the message on to an MDL
programmer-supplied item hook function to see if the hook function wants to handle
that type of message. If it does, the item handler will typically just return without
further action. If the item hook function does not want to handle that type of message
or if there isn’t an item hook function attached to the item, then the item handler will
perform its default processing for that type of message. The item handler or item hook
function can set various fields in a message to return information to the function that
sent the message.

Each item handler can decide whether and when to pass messages on to an attached
item hook function. Therefore, it is important to carefully read the item type
description of an item to determine which messages will be sent to a particular item
hook function. See “Item Hook Functions” on page 17-28 for more information.

In addition to an item hook function, which is attached to a specific item and is only
sent messages relevant to that item, a dialog hook function can be attached to the
entire dialog box. Dialog hook functions are sent messages whenever a user
interaction occurs anywhere in the dialog box to which it is attached. The dialog box
manager routines directly send messages to dialog hook functions. They are not sent
MicroStation MDL Programmer’s Reference Guide 15-17

Dialog Box Manager Overview
Hook function IDs
first to item handler functions. Whether a message is sent to a dialog hook function
does not depend on the item for which the message is ultimately destined. Instead, the
messages the MDL programmer has said the dialog hook function is interested in
determine whether a message is sent. After that the hook function will only be sent
those types of messages.

For example, suppose that the user moves a dialog box on the screen. The dialog box
has one toggle button item inside it. There is a dialog hook function, which has
indicated an interest in update messages, attached to the dialog box and an item hook
function attached to the toggle button. The following sequence of events occurs:

1. The window manager redraws the dialog box border at the new
position. It sends a message to the dialog box manager that it should
draw the contents of the window.

2. The dialog box manager sends a “draw” message to the item handler
associated with each item in the dialog box. Here a “draw” message is
sent to the toggle button item handler. This message contains a
pointer to the specific item to draw.

3. The toggle button item handler draws a toggle button using
information contained in the pointer to the specific toggle button. It
does not bother to pass along the “draw” message to the item hook
function that is attached to the toggle button. Since a toggle button’s
item hook function could not perform any useful action upon receipt
of a “draw” message, it is best that it not be sent in the first place. The
drawing of a toggle button is performed by the toggle button item
handler; it is not necessary or desirable that a hook function be
allowed to modify this behavior.

4. The dialog box manager next sends an “update” message to the dialog
hook function. This could be used to draw anything into the dialog
box.

Since the dialog box manager routines have no built-in knowledge about specific items
(all it knows is the type of items), it is very simple to add new item types by publishing
new item handlers. No changes need to be made to any of the dialog box manager
routines themselves to support new item types.

Hook function IDs
When referencing hook functions within a resource file, a long integer ID is specified.
To avoid conflicts with other developers, MicroStation uses negative numbers for its
hook function IDs. Other developers should only use positive numbers for their hook
function IDs. Note that dialog hook function IDs and item hook function IDs use the
same number space. Number space is akin to name space or the concept of scope, in
that it is an area reserved for references, and no members within that area can be
15-18 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Overview
Dialog Box Manager Header Files
identical. In other words, the number 1 cannot be used for both a dialog hook function
ID and an item hook function ID.

Hook function ID numbers should be defined in the same file in which resource IDs
(such as item resource ID numbers and dialog box resource ID numbers) are defined.
This file will then be included in both an application’s resource files and in the MDL
program file that contains the main function.

To make an application’s hook functions visible to the dialog box manager, the hook
function ID numbers and hook function addresses need to be published with a call to
the mdlDialog_hookPublish function. Once this function is called, the dialog box
manager can determine the address of the appropriate hook function when given a
hook function ID number.

Dialog Box Manager Header Files
The header file dlogbox.h contains the declaration of the dialog box manager resource
structures. It must be included in all resource files that contain dialog box manager
resource definitions.

The header file dlogitem.h contains structures that hook functions need to refer to. In
particular, it contains the declarations for dialog messages and dialog item messages.
dlogitem.h must be included in all MDL program files that contain hook functions.
dlogitem.h automatically includes dlogbox.h.

The header file dlogman.fdf contains function prototypes for all the dialog box
manager functions. When this file is included, the MDL compiler can find dialog box
manager function argument errors. This file is also useful as a quick reference to the
arguments to all of the dialog box manager functions. For each dialog box manager
function, the function arguments are listed with a description of the argument, and an
indication of whether the argument is an input to or an output from the function.

The header file dlogids.h contains the IDs of all MicroStation resources. If an
application wishes to use one of these resources it should include dlogids.h.

The Dialog Box Manager Library
The file ditemlib.ml contains all of the item-type-specific dialog box manager
functions. All MDL programs that use the dialog box manager routines need to link
with ditemlib.ml.
MicroStation MDL Programmer’s Reference Guide 15-19

Dialog Box Manager Overview
Creating A Dialog Box
Creating A Dialog Box

➤ To create a dialog box

1. Create a dialog box resource instance. This contains the title of the
dialog box, its attributes, size, help reference ID and a list of items.
See “DialogBoxRsc Structure” on page 16-2 for more information.

2. Create item resource instances for the items that are used in the dialog
box. An item resource instance specifies the item’s label, the
application variable it controls, its item hook function, and other
information. See “Standard Dialog Box Items” on page 16-1 for more
information.

3. If the item resource instances refer to application variables that are
structures or pointers to structures, type definitions must be created
for those variables. Place a publishStructures statement in the
application’s .mt type definition file for each referenced structure.
Generate the type resource file by running the rsctype utility on the
application’s type definition file. See “Referencing application
variables from resource files” and “C expression handling” in the
MicroStation MDL Function Reference Manual and “Generating
Resource Files from C Type Definitions” on page 7-17 for more
information.

4. Compile the application’s resource file. See“Compiling an Application
Command Table” on page 7-11 for more information.

5. If item or dialog hook functions have been used in the dialog box,
these functions must be added to the MDL application. The dialog box
manager also needs to be informed of the IDs and addresses of these
hook functions when the application runs. To do this, call
mdlDialog_hookPublish from the application’s main function. See
“Hook Functions” on page 17-1 and “Hook function IDs” on page
15-18 for more information.

6. The resource file that contains the dialog box must be opened when
the application runs. To do this, place a call to mdlResource_openFile
inside the application’s main function. See “Resource Management
Functions” in the MicroStation MDL Function Reference Manual for
more information.

7. If application variables have been referenced from the dialog box’s
item resource instances, then those variables need to be published in
the main function of the MDL application. To do this, call the
appropriate mdlDialog_publish… functions. See “Referencing
Application Variables from Resource Files” on page 15-10 for more
information.

8. Compile and link the MDL application if there are item or dialog hook
functions, or resource file referenced variables. Be sure to link with
15-20 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Overview
Dialog Box Manager Sample Programs
the dialog box manager library ditemlib.ml. See “Linking MDL
Applications” on page 7-24 for more information.

9. (Optional) Merge the application’s resource files with the MDL
program file to create an application file. See “Resource Librarian” on
page 7-27 for more information on combining resource files.

10. Load the MDL application by keying in: MDL LOAD
<applicationName>.

11. Display the dialog by keying in: DIALOG <dialogId
applicationName>. Application variables are automatically modified
and hook functions called as the user interacts with the dialog.
Alternatively, mdlDialog_open can be called from the application’s
main function or from a function that is attached to an application’s
command table.

Remember that the use of the MDL bmake utility can automate steps 3, 4, 8 and 9.

Dialog Box Manager Sample Programs
See the basic application, in the mdl\examples\basic directory, for an example of an
MDL application that opens a simple dialog box. The source for this example can also
be found in “A Complete Example” on page 18-1.

See the dlogdemo application, in the mdl\examples\dlogdemo directory, for a more
involved MDL application that shows the use of all of the standard dialog box items.
The dlogdemo application with the basic application are meant to be used as
templates when creating new applications that make use of the dialog box manager.

See the iconedit application, in the mdl\examples\rasticon directory, for examples of
using dialog box manager routines and the generic item.
MicroStation MDL Programmer’s Reference Guide 15-21

Dialog Box Manager Overview
OSF/Motif Style Guide
Recommended Reading
The following reading suggestions will help you design a successful user interface for
your MDL application:

OSF/Motif Style Guide
OSF/Motif Style Guide, Open Software Foundation, Englewood Cliffs, NJ: Prentice Hall,
1990.

OSF/Motif UserÕs Guide, Open Software Foundation, Englewood Cliffs, NJ:Prentice
Hall, 1990.

IBM Systems Application Architecture, Common User Access

Systems Application Architecture, Common User Access: Advanced Interface Design
Guide, IBM Corporation, 1989.

Microsoft Guidelines
Microsoft Windows Software Development Kit, Guide to Programming, Version 3.0,
Microsoft Corporation, 1990.

The GUI Guide, International Terminology For The Windowsª Interface, Microsoft
Corporation, 1993.

Apple Computer User Interface Guidelines
Macintosh Human Interface Guidelines, Apple Computer Inc., Reading, MA: Addison-
Wesley, 1993.

Making it Macintosh, Macintosh Human Interface Guidelines Companion, CD-ROM,
Apple Computer Inc., Reading, MA: Addison-Wesley, 1993.

Inside Macintosh Series, Apple Computer Inc., Reading, MA: Addison-Wesley, 1992-
1993. Specific volumes concerning user interface design include:

• Inside Macintosh: Overview

• Inside Macintosh: Macintosh Toolbox Essentials

General Interface Guidelines
The Art of Human-Computer Interface Design, Edited by Brenda Laurel, Addison-
Wesley, 1990. Tog on Interface, Bruce Tognazzini, Addison-Wesley, 1991.
15-22 MicroStation MDL Programmer’s Reference Guide

16 Standard Dialog Box Items
This chapter discusses the standard dialog box items that are
supported by the MicroStation dialog box manager.
Structured Items
In addition, the structures used to define dialog boxes and dialog box item lists within
resource files are explained in detail. This is followed by a description of those
structure members that are common to multiple dialog item resource specifications.

Each dialog box item description includes: instructions for creating an item list
specification, instructions for creating an item resource specification, a list of the
messages that will be sent to item hook functions, and a list of relevant dialog box
manager functions.

The following standard dialog items are discussed in this chapter:

• Label Item (page 16-9)

• Group Box Item (page 16-11)

• Separator Item (page 16-12)

• Toggle Button Item (page 16-13)

• Push Button Item (page 16-16)

• Option Button Item (page 16-21)

• Scroll Bar Item (page 16-26)

• Text Item (page 16-28)

• Multi-line Text Item (page 16-33)

• Color Picker Item (page 16-38)

• Level Map Item (page 16-41)

• Menu Bar Item (page 16-43)

• Text Pull-down Menu (page 16-47)

• Option Pull-down Menu (page 16-52)
MicroStation MDL Programmer’s Reference Guide 16-1

Standard Dialog Box Items
DialogBoxRsc Structure
• Color Picker Item (page 16-38)

• Tool Palettes (page 16-57)

• Icon command frame (page 16-58)

• Icon command palette (page 16-60)

• Icon command (page 16-62)

• List Box Item (page 16-77)

• Generic Item (page 16-90)

• Button Group Items (page 16-93)

• Sash Item (page 16-98)

• Scale Item (page 16-100)

• Popup Menu Item (page 16-104)

• Radio Button Item (page 16-106)

• Combo Box Item

DialogBoxRsc Structure
The DialogBoxRsc data structure (defined in dlogbox.h) defines a dialog box in a
resource file. Its header section contains information for the entire dialog (like its width
and height), and then a list of items.

typedef struct dialogboxrsc
{

ULong attributes; /* dialog attributes */
int width; /* dialog coords */
int height; /* dialog coords */
ULong helpInfo; /* help for entire dialog */
char *helpSource; /* help task ID */
long dialogHookId; /* dialog hook ID */
long parentDialogId; /* to inform when destroyed */

#if defined (resource)
char label[]; /* dialog label (title) */
DialogItemRsc itemList[]; /* array of dialog items */

#else
long labelLength; /* length of label (title) */
char label[1]; /* dialog label (title) */

#endif

} DialogBoxRsc;
16-2 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
DialogBoxRsc Structure
The following table lists possible values for the attributes field (described above) and
the meaning of those values:

Field Description

attributes Specifies the attributes of the dialog box. It is constructed by combining
the constants from the “attributes Value” table below with the logical OR
operator.

width Specifies the width of the dialog box’s content area in dialog coordinate
units.

height Specifies the height of the dialog box’s content area in dialog coordinate
units.

helpinfo
helpSource

Currently unused. Had been used in the past to specify the dialog
information for version 4 help resource files. These two fields may be
used with version 5 help files in the future, so do not reuse them for any
other information.

dialogHookId Specifies the ID of a dialog hook function. See “Dialog Box Manager
Hook Functions” for more information. If the dialog box does not have
a dialog hook function, specify NOHOOK for this field.

parentDialogId Specifies the ID of the parent dialog box when one dialog box needs to
launch another dialog box. Then this field is used to determine which
dialog to inform when the child dialog box is destroyed. Use
NOPARENTID if the dialog box is not launched from another dialog box,
or the parent dialog does not need to be informed of the child’s
destruction.

label Contains the title of the dialog box. This string will display in the title
bar of the dialog box.

itemList Is an array of DialogItemRsc and lists dialog items that the dialog box
contains. The DialogItemRsc structure is discussed after the following
table.

attributes Value Meaning

DIALOGATTR_DEFAULT Is the default attribute. None of the other attributes in
this table are set.

DIALOGATTR_MODAL Indicates the dialog box is modal. It will not have a
window control icon on the left side of the title bar or
icons on the right side of the title bar. See “Modeless
and modal dialog boxes” on page 15-10 for more
information on modal dialogs.
MicroStation MDL Programmer’s Reference Guide 16-3

Standard Dialog Box Items
DialogBoxRsc Structure
DIALOGATTR_GROWABLE Indicates the dialog box can be resized. It will have
resize corners drawn in the window border and the
window manager will allow the user to change the
size of the dialog box.

DIALOGATTR_SINKABLE Indicates the dialog box can be sunk. See “Sinking
dialog boxes” on page 15-13 for more information on
sinking.

DIALOGATTR_UNCLOSEABLE Indicates the dialog box cannot be closed.
MicroStation’s command window is an example of an
uncloseable dialog box.

DIALOGATTR_NOAUTOSWITCH Indicates the keyboard focus will not automatically
switch to the default focus window when a click
occurs in a window that cannot accept the focus. See
“Keyboard focus” on page 15-13 for more information
on keyboard focus auto-switching.

DIALOGATTR_CLOSEONNEW Indicates that the dialog box should be closed when a
design file is opened. This attribute is used when the
contents of a dialog box depend on the characteristics
of the file opened.

DIALOGATTR_ALWAYSSETSTATE Modal dialogs usually do not set the underlying
application’s state until the user clicks on the OK
button. If this attribute is set, the dialog box manager
will set the application state when the user interacts
with an item. See “Modeless and modal dialog boxes”
on page 15-10 for more information on modal dialogs.

DIALOGATTR_BOTHVIRTUAL If the platform supports two virtual screens, setting
this attribute indicates that the dialog is to appear on
both virtual screens.

DIALOGATTR_NOAUTOACTIVATE Indicates that the dialog manager should not
automatically activate the default items (typically the
OK and Cancel buttons) in a dialog box when the user
presses the <Return> or <Esc> keys.

DIALOGATTR_NOSYNCHONNEW Indicates that the dialog manager should not
synchronize the dialog items in this dialog box when a
new design file is opened.

DIALOGATTR_NORIGHTICONS Indicates that the dialog manager should not place any
window control icons in the right side of the window
title bar. That is, no Sink or Minimize icons are
displayed in the title bar.

attributes Value Meaning
16-4 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
DialogBoxRsc Structure
In the DialogBoxRsc, the #if defined (resource) construction specifies two
variable-length arrays when used with the resource compiler. The first is an array of
char; the second is an array of DialogItemRsc. The resource compiler precedes all
variable length arrays with a long, which contains the number of array members.

This syntax is meaningless in C, where only the first variable-length array can be
directly referenced. The C compiler cannot determine the start of the second array
because its position depends on the length of the first. Therefore, the hidden long
generated by the resource compiler becomes visible and only the first variable-length
array is declared This information can be used at runtime to find the start of the second
array. The construct #if defined (resource) is used in a similar fashion in other data
structures in this chapter.

DIALOGATTR_NOAUTOFOCUS Indicates that the dialog manager should not
automatically set the input focus to the dialog box
when it is opened. By default, the dialog manager
assigns input focus to a newly opened dialog box if it
has any items which can receive input focus.

DIALOGATTR_DONTCAUSEAUTOSWITCH Indicates that the dialog manager should not switch
the input focus to the default dialog box if the user
clicks in this NON-FOCUSABLE dialog box. This
attribute should only be used on dialog boxes which
contain no focusable items.

DIALOGATTR_AUTOUNLOADAPP Indicates that the dialog manager should automatically
unload the mdl application which owns this dialog
box when the dialog box is closed.

DIALOGATTR_DONTDRAWBEVEL Indicates that the dialog manager should not draw a
beveled border around the dialog box when the GUI
mode is Motif. By default, all windows/dialog boxes
are bordered by a beveled rectangle in Motif GUI
mode (palettes are always beveled in Motif). This
attribute is ignored in GUI modes other than Motif.

DIALOGATTR_REQUESTBACKINGSTORE Indicates that the dialog manager should use backing
store for the display area of the dialog box if the user
has allowed the use of backing store within
MicroStation in the user preferences. If, either backing
store is not being used due to the user preferences
setting or due to the absence of this attribute on the
dialog box, the application must be able to draw the
contents of the dialog box itself as needed.

attributes Value Meaning
MicroStation MDL Programmer’s Reference Guide 16-5

Standard Dialog Box Items
DialogItemRsc Structure
DialogItemRsc Structure
Each item in a dialog box needs to have an DialogItemRsc entry in the DialogBoxRsc
field, itemList. The order that items are listed is important in two respects: the items
are drawn in the order specified, and the input focus moves from item to item based
on this order. The DialogItemRsc data structure is declared as follows:

typedef struct dialogitemrsc
{

Sextent extent; /* item area, origin (in dialog coords), if
width/height is zero, use dimensions
specified in item */

long type; /* item type */
long id; /* item ID */
byte attributes; /* item attributes */
long itemArg; /* item argument */

#if defined (resource)
char label[]; /* item label */
char auxInfo[]; /* item auxiliary information */

#else
int labelLength; /* length of item label */
char label[1]; /* item label */

#endif

} DialogItemRsc;

The meaning of some of the DialogItemRsc fields depends on the type of item
specified. See the descriptions of the various item types for the exact interpretation.

Field Description

extent Specifies the area (x position, y position, width and height) that the item
will cover in the dialog box. This field is in dialog coordinate units, and
it’s origin is the upper left corner of the dialog box. For many item
types, 0 can be specified for the width or height. The handler for that
item type will then calculate a reasonable default if possible.

type Specifies the type of item to create. Valid values for this field are
ColorPicker, Generic, GroupBox, IconCmdFrame, Label, LevelMap,
ListBox, MenuBar, MLText, OptionButton, PushButton, ScrollBar,
Text, ToggleButton, Sash, Scale, RadioButton, MenuBarX,
LevelPicker, ToolBox, IconCmdX, ButtonGroup and IconCmdFrameX.

id Specifies the resource ID of the item instance to load. The dialog box
manager calls the resource manager with type and ID to load the correct
item resource. The item types, Label and GroupBox, do not need to load
an associated item resource. All information needed to specify these
types is contained in the DialogItemRsc field so the ID field can be set
to any value (usually 0).
16-6 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
DialogItemRsc Structure
The following is an example of a complete dialog box resource. This is the Element
Attributes dialog box, and it is defined in MicroStation’s resource file.

#define D1 YC/2
#define D2 YC
#define XS 7*XC + XC/2
#define X2 14*XC

DialogBoxRsc DIALOGID_ElementAttributes=
{

DIALOGATTR_DEFAULT | DIALOGATTR_SINKABLE | DIALOGATTR_CLOSEONNEW,
25*XC, 10*YC + YC/2, NOHELP, MHELP, NOHOOK, NOPARENTID,
"Element Attributes",

{
{{XS, GENY(1), 5*XC, 0}, Text, TEXTID_ElementLevel, ON, 0, "", ""},
{{XS, GENY(2)+D1, 5*XC, 0}, Text, TEXTID_ElementColor, ON, 0, "", ""},
{{X2, GENY(2)+D1, 0, 0}, ColorPicker, COLORPICKERID_ElementColor,

ON, 0 ,"", ""},
{{XS, GENY(3)+D1, 5*XC, 0}, Text, TEXTID_ElementStyle, ON, 0, "", ""},
{{X2, GENY(3)+D1, 0, 0}, OptionButton, OPTIONBUTTONID_ElementStyle,

ON, 0, "", ""},

attributes Specifies the initial general state of the item. This field can be ENABLED
(ON) to allow an item to be manipulated or DISABLED (OFF). A disabled
item is dimmed, cannot accept the input focus, and ignores user actions.
Most items should be ENABLED (ON).
In order to make the dialog item initially invisible, use the logical OR
operator to combine the HIDDEN constant with the appropriate enabled
constant. For example, with ENABLED | HIDDEN, the dialog item is
initially invisible; when it becomes visible with a call to
mdlDialog_itemShow, it will be automatically enabled.

itemArg Contains different values for different item types. For example, label
items use this field to specify the kind of justification to use. Most items
do not currently use this field.

label Represents a string that lets you override the label of the item for a
particular dialog box. A default label is defined in each item resource.
The label specified in a DialogItemRsc overrides any label specified in
the item resource. This field lets you use the defined behavior of an
item, but label the item differently. The label’s use depends on the item
type.

auxInfo Contains additional item-specific information. Currently, this field is
used only to override the access string defined in an item resource. This
ability enables the item to act as it is defined in the item resource but
affect a different application variable.

Field Description
MicroStation MDL Programmer’s Reference Guide 16-7

Standard Dialog Box Items
Common Item Resource Fields
{{XS, GENY(4)+D1, 5*XC, 0}, Text, TEXTID_ElementWeight, ON, 0,"", ""},
{{X2, GENY(4)+D1, -58, 0}, OptionButton, OPTIONBUTTONID_ElementWeight,

ON, 0, "", ""},
{{XS, GENY(5)+D2, 13*XC, 0}, OptionButton, OPTIONBUTTONID_ElementArea,

ON,0,"", ""},
{{XS, GENY(6)+D2, 13*XC, 0}, OptionButton, OPTIONBUTTONID_ElementClass,

ON,0,"", ""},
{{XS, GENY(7)+D2+YC/4, 0, 0}, ToggleButton, TOGGLEID_ElementFill,

ON, 0,"", ""},
}
};

#undef D1
#undef D2
#undef XS
#undef X2

Common Item Resource Fields
Most item resource data structures discussed in “Standard dialog box items” have many
fields in common. These common fields will be discussed here rather than with each
individual item resource description.

Field Description

commandNumber Contains a command number that will be put at the end of
MicroStation’s input queue when the item is activated. (The user
releases the data button when the cursor is within the item, or, if the
item accepts keystrokes, the user presses spacebar or enter when focus
is on item).

commandSource Specifies the task that will execute the command associated with
commandNumber. The constant LCMD indicates that the task that owns
(originally creates) the dialog should execute the command. The
constant MCMD indicates that MicroStation should be used to execute the
command. (If MCMD is specified, commandNumber must be a MicroStation
command number defined in cmdlist.h.)

unparsed Specifies a string that will be placed with commandNumber on
MicroStation’s input queue when an item is activated. This field is useful
when a command that cannot be fully parsed into a command number
needs to be specified. Specifying unparsed simulates the user keying in
the command indicated by commandNumber, a space character, and then
the unparsed string.

helpInfo Specifies the help reference ID for an item. If no help exists for an item,
set this field to NOHELP.
16-8 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Label Item
Label Item
The label item is used to draw a text string somewhere in a dialog. The text can be
forced to wrap at word breaks and can be left, right or center-justified. The text of a
label can be changed with a call to mdlDialog_itemSetLabel.

The label item does not need an item resource to complete its appearance, and is
completely specified by information in the item list.

Item list specification
The DialogItemRsc field extent specifies the location of the label. Most label items are
only a single line high. In this case, set the height to 0. The label handler will
automatically make the label height equal to the current dialog font height.

The width can also be 0. In this case, the width of the item will be the width of the
original label contents. If you later set the label to a longer string, it will be truncated

helpSource Specifies both the type of help (command or topic) and the task that
owns the help file to use for the item. If no help exists for the item, set
this field to MHELP.

itemHookId Specifies the ID of an item hook function. See “Hook function IDs” on
page 15-18 for more information. If an item does not have an item hook
function, specify NOHOOK for this field.

itemHookArg Specifies a value that an item hook function uses to determine its
operation. itemHookArg is stored in an item’s RawItemHdr structure. See
“RawItemHdr structure” on page 17-32 for more information.

label Contains a string that lets you specify a default label for the item. This
default label can be overridden by the DialogItemRsc label field, which
is part of a dialog box’s item list.

accessStr Specifies the underlying application variable that the item will control.
This field should contain a C expression that references a variable
published with a call to an mdldialog_publish… function. An example
of this type of expression is tcb->control.grid_lock. (tcb points to
one of MicroStation’s global data areas and is automatically available for
any resource file to reference).

synonymsId Indicates the DItem_SynonymsRsc instance to use when synching a list
of synonyms after an item’s state changes. See “Synonym resources” on
page 15-12 for more information about synonyms.

Field Description
MicroStation MDL Programmer’s Reference Guide 16-9

Standard Dialog Box Items
Item resource specification
since it will no longer fit in the same area on the screen. If the label can be changed
dynamically, a width the length of the longest anticipated string should be specified.

The type field should be Label.

The dialog box manager does not use the ID since a label item does not have an item
resource. It can be used, however, to differentiate between labels when a dialog has
many label items. In this case, the ID would be used with a call to
mdlDialog_itemGetByTypeAndId.

The attributes field can be ON or OFF, and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field specifies justification, word-wrapping, and font style. Justification
options are ALIGN_LEFT, ALIGN_RIGHT and ALIGN_CENTER. If no alignment is specified,
ALIGN_LEFT is assumed. To specify word wrap, use the logical OR operator to combine
with LABEL_WORDWRAP. To specify the bold dialog font (instead of the default normal
dialog font), use the logical OR operator to combine with LABEL_FONT_BOLD.

The label field contains the text of the label item.

The auxInfo field is not used with label items.

The following is an example of a label item list specification:

{{XC, YC, 30*XC, 0}, Label, 0, ON, ALIGN_LEFT|LABEL_FONT_BOLD,
 "Hello, World", ""}

Item resource specification
A label item does not have an item resource.

Item hook function messages
Since a label item does not have an item resource, it cannot have an item hook
function and will not receive item messages.

Label item functions
The mdlDialog_labelSetAttributes function allows the application program to
changes the justification and weight of the label text.
16-10 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Group Box Item
Group Box Item
The group box item is used to draw a rectangle with a 3D appearance around a group
of dialog items. A label can be drawn on the top edge of the rectangle, near the left
side of the group box. The text of a label can be changed by calling
mdlDialog_itemSetLabel.

The group box item doesn’t need an item resource to complete it’s appearance and is
completely specified by information in the item list.

Item List Specification
The DialogItemRsc field extent specifies the location of the group box. Both a
positive width and height should be specified. The group box handler cannot
determine reasonable defaults.

The type field should be GroupBox.

The ID is unused by the dialog box manager, since a group box item does not have an
item resource. It can be used, however, to differentiate between group boxes when a
dialog has a number of group box items. In that case you would use the ID in a call to
mdlDialog_itemGetByTypeAndId.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field contains the label of the group box item. This is placed over the top
edge of the group box, near the left edge.

The auxInfo field is not used with group box items.

The following is an example of a group box item list specification:

{{XC, YC, 20*XC, 10*YC}, GroupBox, 0, ON, 0, "Snap", ""}

Item resource specification
A group box item does not have an item resource.
MicroStation MDL Programmer’s Reference Guide 16-11

Standard Dialog Box Items
Item hook function messages
Item hook function messages
Since a group box item does not have an item resource, it cannot have an item hook
function and will not receive item messages.

Group box item functions
There are no group box item functions.

Separator Item
The seprator item is used to draw a vertical or horizontal seprator line the height or
width of a dialog box.

The separator item doesn’t need an item resource to complete its appearance and is
completely specified by information in the item list.

Item List Specification
The DialogItemRsc field extent specifies the location of the separator. The X or Y
origin point of the line is defined and the width/height should be set to 0. The
seprartor handler determines whether the separator line is vertical or horizontal by
whether the X origin is 0 (if non-zero, the separator is assumed to be vertical).

The type field should be Separator.

The ID is unused by the dialog box manager, since a seprator item does not have an
item resource. It can be used, however, to differentiate between seprator when a
dialog has a number of separator items. In that case you would use the ID in a call to
mdlDialog_itemGetByTypeAndId.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field is unused and should usually be set to "".
16-12 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
The auxInfo field is not used with separartor items.

The following is an example of a separator item list specification:

{{0, 8*YC, 0, 0}, Separator, 0, ON, 0, "", ""}

Item resource specification
A separator item does not have an item resource.

Item hook function messages
Since a separator item does not have an item resource, it cannot have an item hook
function and will not receive item messages.

Separator item functions
There are no separator item functions.

Toggle Button Item
The toggle button item (also known as a check button or a check box) shows the state
of an application variable that is either on or off.

Item list specification
The DialogItemRsc field extent specifies the location of the toggle button. The x
position specifies the location of the left side of the toggle button’s 3D square, not the
start of the toggle button’s text label. The y position specifies both the top of the 3D
square and the top of the text label. If the width is 0, the width of the label is used. If
the height is 0, the height of the current dialog font is used.

The type field should contain ToggleButton.

The ID determines the DItem_ToggleButtonRsc instance to load.

The attributes field can be ON or OFF, and optionally combined with HIDDEN. It will
usually be ON.
MicroStation MDL Programmer’s Reference Guide 16-13

Standard Dialog Box Items
Item resource specification
The itemArg field is unused and should usually be set to 0.

The label field overrides the label contained in the DItem_ToggleButtonRsc instance.

The auxInfo field currently overrides only the access string contained in the
DItem_ToggleButtonRsc instance.

The following is an example of a toggle button item list specification:

{{XC, YC, 0, 0}, ToggleButton, TOGGLEID_LockGrid, ON, 0, "", ""}

Item resource specification
The toggle button item is defined in a resource file with the following structure:

typedef struct ditem_togglebuttonrsc
{

ULong commandNumber;
ULong commandSource;
long synonymsId;
ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;
ULong mask;
char invertFlag;

#if defined (resource)
char label[];
char accessStr[];

#else
long labelLength;
char label[1];

#endif

} DItem_ToggleButtonRsc;
16-14 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
The DItem_ToggleButtonRsc structure has the following unique fields. (See “Common
item resource fields” for a description of any field not in this table).

The following is an example of a toggle button item resource. This item is used in the
Locks and Toggles dialog boxes, and is defined in MicroStation’s resource file.

DItem_ToggleButtonRsc TOGGLEID_LockGrid=
{

CMD_LOCK, MCMD, NOSYNONYM, NOHELP, MHELP, NOHOOK, NOARG, 0x1,
NOINVERT, "Grid Lock", "tcb->control.grid_lock"

};

Item hook function messages
The following messages are sent to item hook functions that are attached to toggle
button items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_INIT

DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_BUTTON

DITEM_MESSAGE_SYNCHRONIZE

DITEM_MESSAGE_GETSTATE

DITEM_MESSAGE_SETSTATE

DITEM_MESSAGE_STATECHANGED

DITEM_MESSAGE_QUEUECOMMAND

Field Description

mask If invertFlag is FALSE, when the toggle button is ON (depressed and
checked) the bitwise OR operator combines mask with the variable
specified by accessStr. When the toggle button is OFF (raised and
unchecked) the bitwise AND operator combines the 1’s complement of
mask with the variable specified by accessStr.
If invertFlag is TRUE, when the toggle button is OFF (raised and
un-checked) the bitwise OR operator combines mask with the variable
specified by accessStr. When the toggle button is ON (depressed and
checked) the bitwise AND operator combines the 1’s complement of
mask with the variable specified by accessStr.

invertFlag See the description for mask.
MicroStation MDL Programmer’s Reference Guide 16-15

Standard Dialog Box Items
Toggle button item functions
Toggle button item functions
mdlDialog_toggleButtonGetInfo retrieves detailed information about a toggle button.

mdlDialog_toggleButtonSetInfo sets various aspects of a toggle button.

Push Button Item
The push button item activates commands when the data button is pressed and then
released while the cursor is on the push button. A push button can also be activated by
pressing the enter key if a user has given focus to that button by moving via the tab
key.

Item list specification
The DialogItemRsc field extent specifies the location of the push button. If width is 0
the width of the label, plus an extra character on each side, is used. Since all buttons in
a given dialog should have the same width, the width usually needs to be specified.
BUTTON_STDWIDTH can be used for buttons with labels that have only five or six
characters. Height should be 0. This height lets the push button item handler set a
height that is the same for all push buttons.

The type field should contain PushButton.

The ID determines the DItem_PushButtonRsc instance to load.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field can override the label contained in the DItem_PushButtonRsc instance.

The auxInfo field is not used with push button items.

The following is an example of a push button item list specification:

{{2*XC, 5*YC, BUTTON_STDWIDTH, 0}, PushButton,
PUSHBUTTONID_Precision, ON, 0, "", ""}
16-16 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
Item resource specification
The push button item is defined in a resource file with the following structure:

typedef struct ditem_pushbuttonrsc
{

char isDefault;/* TRUE if this is default button */
ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;
ULong commandNumber;
ULong commandSource;

#if defined (resource)
char unparsed[];
char label[];

#else
long unparsedLength;
char unparsed[1];

#endif

} DItem_PushButtonRsc;

The DItem_PushButtonRsc structure has the following unique fields. See “Common
Item Resource Fields” on page 16-8 for a description of any field not in this table.

Field Description

isDefault Indicates whether the push button is a dialog box’s default button.
Possible values are listed in the isDefault table below.

itemHookArg When the standard push button item hook function is invoked by
declaring HOOKITEMID_Button_StandardAction in the itemHookId field,
itemHookArg specifies the actionType for the push button.
actionType determines the behavior of push buttons in modal dialogs.
It is sent to a dialog hook function as part of the
DIALOG_MESSAGE_DESTROY message.
The values of itemHookArg listed in the itemHookArg table below have
special meanings when the standard push button item hook function is
attached to a push button in a modal dialog.
MicroStation MDL Programmer’s Reference Guide 16-17

Standard Dialog Box Items
Item resource specification
The following table lists possible values for the isDefault field (described above) and
the meaning of those values:

The following table lists possible values for the itemHookArg field (described above)
and the meaning of those values:

isDefault Value Meaning

DEFAULT_BUTTON The push button is a dialog box’s default button. The push
button is outlined with a recessed rectangle. The button
will automatically be activated if the user presses the
<Enter> key.
In some situations, a double-click in a dialog box should
also activate the default button. This action must be
implemented manually by calling
mdlDialog_pushButtonActivate.
In any dialog box there should be only one default push
button.

NOT_DEFAULT_BUTTON The button is not a dialog box’s default button.

CANCEL_BUTTON The push button is a dialog box’s cancel button. This type
of push button is automatically activated if the user presses
the <Esc> key and typically means that the operations to
be performed by the dialog box should be aborted
(cancelled).
A dialog box should never contain more than one cancel
button.

PBUTATTR_ALIGNCENTER This attribute automatically centers the push button label in
the push button display rectangle. This is the default
attribute.

PBUTATTR_ALIGNLEFT This attribute causes the push button label text to be left
aligned in the push button display rectangle.

PBUTATTR_ALIGNRIGHT This attribute causes the push button label text to be right
aligned in the push button display rectangle.

itemHookArg Value Meaning

ACTIONBUTTON_APPLY When the push button is activated, the
mdlDialog_itemSetState function will be called for each
item in the dialog box. The dialog box will not be closed.

ACTIONBUTTON_RESET When the push button is activated, the
mdlDialog_itemSynch function is called for each item in
the dialog box. The dialog box will not be closed.
16-18 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
Multi-lined push button items can be displayed by placing newline characters ‘\n’ in
the push button item label.

The following are examples of push button item resources:

DItem_PushButtonRsc PUSHBUTTONID_Precision=
{

NOT_DEFAULT_BUTTON, NOHELP, MHELP,
NOHOOK, NOARG, CMD_POINT_DEFAULT, MCMD, "", "Apply"

}

DItem_PushButtonRsc PUSHBUTTONID_MultiLineLeft=
{

NOT_DEFAULT_BUTTON | PBUTATTR_ALIGNLEFT, NOHELP, MHELP, NOHOOK,
NOARG, CMD_POINT_DEFAULT, MCMD, "", "Left\nAligned\nMultilined"

}

Item hook function messages
The following messages are sent to item hook functions that are attached to push
button items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_BUTTON

DITEM_MESSAGE_SYNCHRONIZE

DITEM_MESSAGE_QUEUECOMMAND

Push button item functions
Using the mdlDialog_pushButtonActivate function produces the same result as
pressing the data button and then releasing it while the cursor is in the indicated push
button. Thus, button and queue command messages are sent to any attached item
hook function. If the hook function does not handle the DITEM_MESSAGE_QUEUECOMMAND
message or if no hook function exists, the push button’s non-zero commandNumber is
placed at the end of MicroStation’s input queue.

ACTIONBUTTON_OK When the pushbutton is activated, the
mdlDialog_itemSetState function will be called for each
item in the dialog box. The dialog box will then be closed.

ACTIONBUTTON_CANCEL When the push button is activated, the dialog box will then
be closed.

itemHookArg Value Meaning
MicroStation MDL Programmer’s Reference Guide 16-19

Standard Dialog Box Items
Push button item functions
The mdlDialog_pushButtonSetDefault function dynamically changes the default
button in a dialog box.

The mdlDialog_pushButtonSetCancel function dynamically changes the cancel button
in a dialog box.

mdlDialog_pushButtonGetInfo retrieves detailed information about a push button.

mdlDialog_pushButtonSetInfo sets various aspects of a push button.

Several default push buttons, are provided with MicroStation, and included in
MicroStation’s resource file. These may be included in dialogs by including in the
DialogItemList Resource specification and optionally, overriding their labels in the
label entry of the dialog item list entry. These are, (see Dlogids.h):

ID Default Label

PUSHBUTTONID_RESET -1 Apply

PUSHBUTTONID_OK -2 Reset

PUSHBUTTONID_CANCEL -3 Ok

PUSHBUTTONID_DEFAULT -4 Cancel

PUSHBUTTONID_OKNotDefault -5 Default

PUSHBUTTONID_ -8 Ok

PUSHBUTTONID_ -7 Yes

PUSHBUTTONID_ -8 No

PUSHBUTTONID_ -9 Retry

PUSHBUTTONID_ -10 Stop

PUSHBUTTONID_ -11 Help

PUSHBUTTONID_ -12 Yes to All
16-20 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item list specification
Option Button Item
The option button item lets the user select one choice from a mutually exclusive set of
choices. It has an optional label right-justified next to a beveled rectangle that shows
the currently selected choice. When the user presses the mouse button while the cursor
is in the currently selected choice, the full list of choices displays. The user drags over
the various option menu choices and releases the mouse button on the new selection.
If the mouse button is released outside of the popped-up menu, the current selection is
unchanged. The option choices can be text strings or icons

Option buttons should be used only to choose application settings. Do not use option
buttons to invoke action commands (such as invoking another dialog box).

Item list specification
The DialogItemRsc field extent specifies the location of the beveled rectangle that
displays the option button’s current choice. Any label associated with the option button
will be right-justified next to the left edge of this beveled rectangle. If the option button
is using text subitems and the width is 0, the width of the longest text subitem label
will be used. If several option buttons are vertically aligned, a non-zero width should
be specified to ensure that these option buttons have the same width. If height is 0, as
it normally should be, the height of the current dialog font will be used.

If the option button uses iconic subitems, the default width and height are the width
and height of the first subitem. With iconic subitems, a width sometimes needs to be
specified in pixels, not dialog coordinate units. To specify pixels, use a negative
number.

The type field should be OptionButton.

The ID determines the DItem_OptionButtonRsc instance to load.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field can override the label contained in the DItem_OptionButtonRsc
instance.

The auxInfo field can currently override only the access string contained in the
DItem_OptionButtonRsc instance.

The following is an example of an option button item list specification:
MicroStation MDL Programmer’s Reference Guide 16-21

Standard Dialog Box Items
Item resource specification
{{7*XC, 7*YC, 13*XC, 0}, OptionButton, OPTIONBUTTONID_ElementClass,
 ON, 0, "", ""}

Item resource specification
The option button item is defined in a resource file with the following structure:

typedef struct ditem_optionbuttonitemrsc
{

ULong iconType;
long iconId;
ULong commandNumber;
ULong commandSource;
ULong value;
ULong mask;
byte enabled;

#if defined (resource)
char label[];

#else
long labelLength;
char label[1];

#endif
} DItem_OptionButtonItemRsc;

typedef struct ditem_optionbuttonrsc
{

long synonymsId;
ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;

#if defined (resource)
char label[];
char accessStr[];
DItem_OptionButtonItemRsc optionButtonItems[];

#else
long labelLength;
char label[1];

#endif

} DItem_OptionButtonRsc;
16-22 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
The itemHookArg field of the DItem_OptionButtonRsc structure controls how the
option button is displayed and initialized as described below:

The only unique field in the DItem_OptionButtonRsc structure is the array of
DItem_OptionButtonItemRscs that is the option button’s subitem list. For consistency
with MicroStation’s dialog boxes, an option button’s label should always end with a
colon.

The DItem_OptionButtonItemRsc structure has the following unique fields. (See
“Common item resource fields” for a description of any field not in this table.)

Value Meaning

OPTNBTNATTR_NEWSTYLE Display the Motif option button bump on the right end
of the option button display rectangle. All option
buttons should specify this attribute in order to display
this bump which allows the user to distinguish more
readily between an option button and a push button.

OPTNBTNATTR_DONTADDBUMPWIDTH This attribute indicates to the item handler that the
bump width should not be added to the width defined
in the option button extent data when creating the
option button item. By default, the item handler
assumes that the extent information only includes
enough space to display the option button selection
text and that it must add additional space to display the
bump without overwriting the text. If this attribute is
used, the item handler assumes the width specifies
enough space for both the text and the bump.

Field Description

iconType Indicates the type of icon the subitem is using. This field should usually
be Icon if you are using IconRscs. If not using icons, specify NOTYPE.

iconId Specifies the ID of the icon instance to load and display as the subitem.
If you are not using icons, specify NOICON.
MicroStation MDL Programmer’s Reference Guide 16-23

Standard Dialog Box Items
Item resource specification
The following is an example of an option button item resource. This item is used in the
Element Attributes dialog box, and is defined in MicroStation’s resource file.

value Is used with mask to determine the currently selected subitem. Only one
subitem can be selected at once. mask indicates the relevant bits of the
variable specified by accessStr. These bits, shifted so the rightmost bit
of the mask becomes bit 0, are compared to value. If the mask is 0x0E
(1110 binary), the masked value will be shifted right 1 bit before being
compared to value. The subitem whose shifted masked bits match value
becomes the currently selected subitem.
For example, suppose bits 2 and 3 of the variableflags will be tested.
mask will then be 0xC (1100 binary). If bit 2 is on, the first subitem
should be selected. If bit 3 is on, the second subitem should be selected.
If both bits are on, the third subitem is selected. value and mask should
be set to the following for each subitem:

mask Is used with value to determine the currently selected subitem. If the
entire variable specified by accessStr is being compared to value, set
this field to NOMASK (which is defined to be 0xFFFFFFFF).

enabled Determines the state (enabled or disabled) of the subitem when the
option button is first created. If this field is set to ON, the subitem can be
selected; when it is set to OFF, the subitem will be dim and cannot be
selected.

label Specifies the subitem’s text string if NOTYPE and NOICON are specified for
iconType and iconId.

Field Description

subitem value mask flags value that will select subitem

0 1 0xC 4 (= 1 << 2)

1 2 0xC 8 (= 2 << 2)

2 3 0xC 12 (= 3 << 2)
16-24 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
DItem_OptionButtonRsc OPTIONBUTTONID_ElementClass=
{

NOSYNONYM, NOHELP, MHELP, NOHOOK, OPTNBTNATTR_NEWSTYLE,
"Class:", "tcb->props",
{

{NOTYPE, NOICON, CMD_ACTIVE_LEVEL, MCMD, 0, 0x000F, ON,
 "Primary"},
{NOTYPE, NOICON, CMD_ACTIVE_LEVEL, MCMD, 2, 0x000F, ON,
 "Construction"}

}
};

Item hook function messages
The following messages are sent to item hook functions that are attached to option
button items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_INIT

DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_BUTTON

DITEM_MESSAGE_SYNCHRONIZE

DITEM_MESSAGE_GETSTATE

DITEM_MESSAGE_SETSTATE

DITEM_MESSAGE_STATECHANGED

DITEM_MESSAGE_QUEUECOMMAND

Option button item functions
mdlDialog_optionButtonGetNItems returns the number of subitems in an option
button.

mdlDialog_optionButtonGetItemInfo retrieves detailed information about a subitem
of an option button.

mdlDialog_optionButtonSetItemInfo sets various aspects of a subitem of an option
button.

mdlDialog_optionButtonDeleteItem deletes a subitem from an option button.

mdlDialog_optionButtonDeleteAll deletes all subitems from an option button.
MicroStation MDL Programmer’s Reference Guide 16-25

Standard Dialog Box Items
Scroll Bar Item
mdlDialog_optionButtonInsertItem inserts a subitem into an option button.

mdlDialog_optionButtonSetEnabled sets the state (enabled or disabled) of an option
button’s subitem.

Scroll Bar Item
The scroll bar item can be used to show the state of a variable that ranges between a
set of values.

Item list specification
The DialogItemRsc field extent specifies the location of the scroll bar. The x position
specifies the left edge and the y position specifies the top edge of the scroll bar. The
orientation of the scroll bar depends on the width and height fields. If width is 0, the
scroll bar handler will make a vertical scroll bar. If height is 0, a horizontal scroll bar
will be created. Both the width and height cannot be 0.

The type field should be ScrollBar.

The ID determines the DItem_ScrollBarRsc instance to load.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field is ignored for scroll bar items.

The auxInfo field can currently override only the access string contained in the
DItem_ScrollBarRsc instance.

The following is an example of a scroll bar item list specification:

{{XC, YC, 10*XC, 0}, ScrollBar, SCROLLBARID_ColorPal_Hue, ON, 0, "", ""}
16-26 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
Item resource specification
The scroll bar item is defined in a resource file with the following structure:

typedef struct ditem_scrollbarrsc
{

long itemHookId;
long itemHookArg;
int minValue;
int maxValue;
int incAmount;
int pageIncAmount;
double sliderSize;

#if defined (resource)
char accessStr[];

#else
long accessStrLength;
char accessStr[1];

#endif

} DItem_ScrollBarRsc;

The DItem_ScrollBarRsc structure has the following unique fields. (See “Common
item resource fields” for a description of any field not in this table.)

The following is an example of a scroll bar item resource:

DItem_ScrollBarRsc SCROLLBARID_ColorPal_Hue=
{

NOHOOK, NOARG, 0, 359, 1, 10, 0.10, ""
};

Field Description

minValue Specifies the value associated with the minimum position of the scroll
bar slider.

maxValue Specifies the value associated with the maximum position of the scroll
bar slider.

incAmount Specifies the amount the current value of the scroll bar is changed when
the user clicks on the scroll bar arrows.

pageIncAmount Specifies the amount the current value of the scroll bar is changed when
the user clicks in the page area of the scroll bar. The page areas are the
areas between the slider and the scroll bar arrows.

sliderSize Specifies the size of the slider relative to the entire size of the scroll bar.
sliderSize must be between 0.0 and 1.0. The slider’s size will never be
less than the width of vertically oriented scroll bars or the height of
horizontally oriented scroll bars.
MicroStation MDL Programmer’s Reference Guide 16-27

Standard Dialog Box Items
Item hook function messages
Item hook function messages
The following messages are sent to item hook functions attached to scroll bar items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_INIT

DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_BUTTON

DITEM_MESSAGE_GETSTATE

DITEM_MESSAGE_SETSTATE

DITEM_MESSAGE_STATECHANGED

DITEM_MESSAGE_QUEUECOMMAND

Scroll bar item functions
The mdlDialog_scrollBarSetRange function sets the minimum and maximum limits of
a scroll bar item. The mdlDialog_scrollArrowDraw function draws a scroll-bar-item-
like arrow in a dialog box.

mdlDialog_scrollBarGetInfo retrieves detailed information about a scroll bar.

mdlDialog_scrollBarSetInfo sets various aspects of a scroll bar.

View window icons and scroll bars
MicroStation has added optimized viewing commands and scroll bars to the view
window borders. The user will have the option of removing these icons and scroll bars
if screen real estate is the primary concern. This new feature means that the content
rectangle of the view window is not necessarily the same as the usable view area. A
new MDL routine mdlView_getViewRectangle should be used instead of
mdlWindow_contentRectGetLocal or mdlWindow_contentRectGetGlobal if the
dimensions of the usable view rectangle are desired.

Text Item
The text item allows editable text strings to be entered. The format of the string can be
specified when external application variables are being modified by the text item.
16-28 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item list specification
The strings can be range checked against specified minimum and maximum string
values. Custom validation can also be performed for an item by attaching a item hook
function that processes the DITEM_MESSAGE_FOCUSOUT message. Horizontal scrolling
allows the editing of more characters than would otherwise fit inside the text item. The
standard undo, cut, copy, and paste operations are supported. Selecting of multiple
characters can be done by dragging the mouse cursor through ranges of text.

Item list specification
The DialogItemRsc field extent specifies the location of the beveled rectangle that
contains the text to edit. Any label associated with the text item will be right-justified
next to the left edge of this beveled rectangle. If width is 0, the width of the beveled
rectangle is calculated with the maximum number of characters the text item can
contain. An explicit width should be specified. If height is 0, as it normally should be,
the height of the current dialog font will be used.

The type field should be set to Text.

The ID determines the DItem_TextRsc instance to load.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field may be set to TEXT_MASK_LABELABOVE to specify that the label should
appear above the beveled rectangle. Otherwise, itemArg should usually be set to 0.

The label field can override the label contained in the DItem_TextRsc instance.

The auxInfo field can currently override only the access string contained in the
DItem_TextRsc instance.

The following is an example of a text item list specification:

{{XC, YC, 5*XC, 0}, Text, TEXTID_ElementLevel, ON, 0, "", ""}

Item resource specification
The text item is defined in a resource file with the following structure:

typedef struct ditem_textrsc
{

ULong commandNumber;
ULong commandSource;
long synonymsId;
ULong helpInfo;
ULong helpSource;
MicroStation MDL Programmer’s Reference Guide 16-29

Standard Dialog Box Items
Item resource specification
long itemHookId;
long itemHookArg;
byte maxSize; /* max # of chars in field */
char formatToDisplay[16]; /* conv to display from internal */
char formatToInternal[16]; /* conv to internal from display */
char minimum[16]; /* minimum value */
char maximum[16]; /* maximum value */
ULong mask; /* only used with integer types */
UShort attributes; /* other attributes */

#if defined (resource)
char label[];
char accessStr[];

#else
long labelLength;
char label[1];

#endif

} DItem_TextRsc;

For consistency with MicroStation’s dialog boxes, a text item’s label should end with a
colon. The DItem_TextRsc structure has the following unique fields. (See “Common
item resource fields” for a description of any field not in this table)..

Field Description

maxSize The maximum number of characters that this text item can edit.

formatToDisplay A sprintf format string to convert the value of the variable specified by
accessStr to a string. Usually, the ‘-’ flag character should indicate left
justification. For example, %-d left-justifies an integer.
Use %w to display the variable as a working units string.

formatToInternal A sscanf format string to convert from the text item’s string value to the
format expected by the variable specified by accessStr.

Interpretation of item
contents

formatToInternal value

integer "%ld"

floating point number "%lf"

working units number "%w"

single character "%c"

string ""
16-30 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
minimum A string that contains the minimum value of the text item. Specify an
empty string (‘ ‘) for no minimum value.
The minimum value should be specified in a format that the
formatToInternal string can process. For example, if
formatToInternal is %ld, ‘0’ means that the text item must be greater
than or equal to 0.
If the item’s contents are interpreted in working units, the minimum
string can be specified as a floating point number.

maximum A string that contains the maximum value of the text item. Specify an
empty string (‘ ‘) for no maximum.
The maximum value should be specified in a format that the
formatToInternal string can process. For example, if
formatToInternal is %ld, ‘100’ means that the text item must be less
than or equal to 100.
If the item’s contents are interpreted in working units, the minimum
string can be specified as a floating point number.

mask This field is used only when the text item’s contents are interpreted as
an integer. In this case, mask indicates which bits of the variable
referenced by accessStr will be affected.
For example, if mask is 0xF0, formatToInternal is %ld, and the text
item contains 3, the high nibble of the variable referenced by accessStr
is set to 3. Usually, mask should be set to NOMASK (defined to be
0xFFFFFFFF), which indicates that the entire variable is affected.

attributes A short integer that specifies text item characteristics. It is constructed by
combining the constants from the following table with the logical OR
operator.

Field Description
MicroStation MDL Programmer’s Reference Guide 16-31

Standard Dialog Box Items
Item resource specification
The following is an example of a text item resource. This item is used in the Element
Attributes dialog box, and is defined in MicroStation’s resource file.

DItem_TextRsc TEXTID_ElementLevel=
{

attributes Value Meaning

TEXT_CONCAT If commandNumber is added to the end of MicroStation’s
input queue (usually because the user has moved the
input focus out of the item), the text item contents will
be included as the unparsed part of the command.
For example, when the user tabs out of the “Level:
text” item in the Element Attributes dialog box, the
command number CMD_ACTIVE_LEVEL is placed on the
input queue. In addition, since CONCAT is specified as
the text item’s attribute, the item’s contents are
appended to the command number. For example,
suppose the text item contains the string “5”. Tabbing
out of the “Level: text” item simulates the user keying
in ACTIVE LEVEL 5.

TEXT_NOCONCAT If commandNumber is added to the end of MicroStation’s
input queue (usually because the user has moved the
input focus out of the item), the contents of the text
item will not be included as the unparsed part of the
command.

TEXT_READONLY The beveled rectangle around the text item will not be
drawn. The user cannot change the text item contents.
However, the text item will respond to
DITEM_MESSAGE_SYNCHRONIZE messages.
This attribute implements a read-back label that
automatically changes its text contents depending on
the state of some application variable.

TEXT_NORESETONERROR This attribute instructs the item handler to not reset the
displayed value of the text item when an error has
been detected for the text item.

TEXT_ABBREVFILENAME This attribute instructs the item handler to abbreviate
the file name displayed in the text item so that the
most significant portion of the file name (the right
most display portion) is visible in the text item and the
full name is preceeded with a “...” to indicate
abbreviation. This attribute implies, and should only
be used in, read-only text items.
16-32 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
CMD_ACTIVE_LEVEL, MCMD, NOSYNONYM, NOHELP, MHELP, NOHOOK, NOARG,
2, "%-ld", "%ld", "1", "63", 0xff, CONCAT, "Level:",
"tcb->ad1.params.actlev"

};

Item hook function messages
The following messages are sent to item hook functions that are attached to text items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_INIT

DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_SYNCHRONIZE

DITEM_MESSAGE_FOCUSIN

DITEM_MESSAGE_FOCUSOUT

DITEM_MESSAGE_KEYSTROKE

DITEM_MESSAGE_POSTKEYSTROKE

DITEM_MESSAGE_GETSTATE

DITEM_MESSAGE_SETSTATE

DITEM_MESSAGE_STATECHANGED

DITEM_MESSAGE_QUEUECOMMAND

Text item functions
mdlDialog_textGetRange gets a text item’s minimum and maximum range strings.

mdlDialog_textSetRange sets the minimum and maximum range strings of a text item.

mdlDialog_textGetInfo retrieves detailed information about a text item.

mdlDialog_textSetInfo sets various aspects of a text item.

Multi-line Text Item
The multi-line text item allows editable multi-line text strings to be entered. Vertical
scrolling is supported. The user controls vertical scrolling by using a scroll bar that is
part of the multi-line text item. When the user presses the Enter key, a line break is
entered. The standard cut, copy and paste operations are supported. Selecting of
MicroStation MDL Programmer’s Reference Guide 16-33

Standard Dialog Box Items
Item list specification
multiple characters can be done by dragging the mouse cursor through ranges of text,
and by performing keyboard navigation with the shift key held down.

Both word-wrap and horizontal scrolling are supported, although they are mutually
exclusive. One or the other must be selected as part of the item definition.

If no-wrap is specified in the item definition, then horizontal scrolling is used. The user
controls horizontal scrolling by moving the cursor. If the user tries to move the cursor
out of the display area, then MicroStation scrolls the text so that the cursor remains in
the display area. Since the user must use the cursor to control horizontal scrolling, this
option is not useful for read-only multi-line text items.

If no-wrap is not specified, then word wrap is supported and horizontal scrolling is not
supported. If a line exceeds the item’s display area, the display is word wrapped at a
break.

Multi-line text items used to display a lot of text should use horizontal scrolling since
this is more efficient than word wrap. This should not be an issue for most
applications.

✍ See the “Text Item Functions” section of the “Dialog Box Manager” chapter
of the MDL Function Reference Manual for more information.

Item list specification
The field origin in the DialogItemRsc field extent specifies the origin of the beveled
rectangle that contains the text to edit. The field width in the DialogItemRsc field
extent specifies the distance from left-most boundary of the left-most bevel, to the
right-most pixel of the right-most bevel. The field height in the DialogItemRsc field
extent is ignored. The actual height of the item is computed based on the
DItem_MultilineTextRsc field displayRows. If a label is associated with the multi-line
text item, it may be displayed above the item or to the left of the item. In either case,
the label does not affect the positioning of the bevel. If the label is displayed to the left,
then the origin of the label is computed as follows: the x coordinate is set to the origin
of the bevel minus the width of the string minus the width of an average character; the
y coordinate is set to the y coordinate of the bevel origin plus 2. The top of the label
lines up with the bottom edge of the top bevel and there is a gap approximately 1
character long between the end of the label and the bevel. If the label is displayed
above, then the origin of the label is computed as follows: the x coordinate is the same
as the x coordinate of the origin of the bevel; the y coordinate is set to the y coordinate
of the origin minus the character height minus one quarter of the character height.

The type field should be set to MLText.
16-34 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
The ID determines the DItem_MultilineTextRsc instance to load.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field may be set to TEXT_MASK_LABELABOVE to specify that the label
should appear above the beveled rectangle. Otherwise, itemArg should usually be set
to 0.

The label field can override the label contained in the DItem_MultilineTextRsc
instance.

The following is an example of a text item list specification:

{{XC, YC, 40*XC, 0}, MLText, MLTEXTID_TextEdit, ON, 0, "", ""}

Item resource specification
The multi-line text item is defined in a resource file with the following structure:

typedef struct ditem_multilinetextrsc
{

long synonymsId;
ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;
UShort attributes; /* other attributes */
long displayRows;

#if defined (resource)
char label[];

#else
long labelLength;
char label[1];

#endif

} DItem_MultilineTextRsc;

The DItem_MultilineTextRsc structure has the following unique fields. (See
“Common item resource fields” for a description of any field not in this table).

Field Description

displayRows The number of rows to be displayed inside the beveled rectangle.

attributes A short integer that specifies text item characteristics. It is constructed by
combining the constants from the following table with the logical OR
operator.
MicroStation MDL Programmer’s Reference Guide 16-35

Standard Dialog Box Items
Item resource specification
attributes Value Meaning

MLTEXTATTR_READONLY This forces the field to be read-only. With this in effect,
the field never accepts the focus. It is impossible to enter
characters into the field, or to position the text cursor to
the field. The scroll bar associated with the dialog box
still accepts the focus, so a user may use it to scroll
through text that has too many lines to be displayed at
once.

MLTEXTATTR_NODISPLAYNLCHAR By default, MicroStation always displays an end-of-line
marker at the end of each line. This lets the user
distinguish between a line wrap and the actual end of a
line. If the MLTEXTATTR_NODISPLAYNLCHAR attribute is
specified, MicroStation never displays the end-of-line
marker.

MLTEXTATTR_AUTOHIDEDECOR By default, MicroStation always displays the beveled
border and scroll bar associated with a multi-line text
item. If the MLTEXTATTR_AUTOHIDEDECOR attribute is
specified along with the MLTEXTATTR_READONLY attribute,
MicroStation will not display the bounding box and scroll
bar unless the text enclosed in the item is large enough
to warrant their existence.

MLTEXTATTR_ALWAYSBEVELED This attribute is used to override part of the effects of the
MLTEXTATTR_AUTOHIDEDECOR attribute. If the
MLTEXTATTR_ALWAYSBEVELED attribute is specified along
with the MLTEXTATTR_READONLY and
MLTEXTATTR_AUTOHIDEDECOR attributes, MicroStation will
always display the beveled border surrounding the multi-
line text.

MLTEXTATTR_NOWRAP This attribute turns off the default auto line wrap
processing of the multi-line item handler. Using this
attribute causes horizontal scrolling to be used instead of
wrapping text to the next display line.

MLTEXTATTR_FIXEDFONT This attribute is used to cause MicroStation to display the
text in the multi-line text item in the fixed width display
font. A proportional font, which is usually preferred, will
be used if this is not defined.
16-36 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
The following is an example of a multi-line text item resource.

DItem_MultilineTextRsc MLTEXTID_MlTxtEdit1=
{

NOSYNONYM, NOHELP, MHELP, HOOKITEMID_EditMlTxt, 1,
0, MLTXT_EDIT_LINES, ""

};

Item hook function messages
The following messages are sent to item hook functions that are attached to text items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_INIT

DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_SYNCHRONIZE

DITEM_MESSAGE_FOCUSIN

DITEM_MESSAGE_FOCUSOUT

DITEM_MESSAGE_KEYSTROKE

DITEM_MESSAGE_POSTKEYSTROKE

DITEM_MESSAGE_GETSTATE

DITEM_MESSAGE_SETSTATE

An MDL program can provide the multi-line text string to MicroStation either by
having an item hook handler respond to a DITEM_MESSAGE_GETSTATE message, or by
calling mdlDialog_itemSetValue. For the DITEM_MESSAGE_GETSTATE message, the
hook handler must set the field stringValueP of the value structure to point to the
string. When using mdlDialog_itemSetValue, the MDL program uses the
stringValueP parameter to provide a pointer to the string. In either case, MicroStation
makes a copy of the string and operates on the internal copy.

An MDL program can retrieve the multi-line text string from MicroStation either by
having an item hook handler respond to a DITEM_MESSAGE_SETSTATE message, or by
calling mdlDialog_itemGetValue. For the DITEM_MESSAGE_SETSTATE message, the field
stringValueP of the value structure points to MicroStation’s copy of the string. The
mdlDialog_itemGetValue function sets valueUnionP->charPFormat to point to
MicroStation’s copy of the string. The MDL program must not modify MicroStation’s
copy of the string.

The multi-line text string passed between MicroStation and the MDL program is one
string with the line breaks marked by a special character. The value of this character is
defined in the built-in variable textNLCharacter.
MicroStation MDL Programmer’s Reference Guide 16-37

Standard Dialog Box Items
Multi-line Text item functions
✍ With MicroStation version 4.2 and later, multi-line text uses the standard
new line character ‘\n’ that is represented in C. Compatibility with older
MDL applications that used textNLCharacter for line breaks will be
maintained, as textNLCharacter will be defined as ‘\n.’

Multi-line Text item functions
mdlDialog_mlTextGetInfo retrieves detailed information about a multi-text item.

mdlDialog_mlTextSetInfo sets various aspects of a multi-text item.

mdlDialog_mlTextGetCursor returns the line number and position of the cursor.

mdlDialog_mlTextSetCursor sets the position of the cursor or highlight range.

mdlDialog_mlTextGetLineCoords translates a cursor position into a line number and
offset.

mdlDialog_mlTextGetLineRange gets the range in bytes of a line in the text buffer.

mdlDialog_mlTextInsertString inserts a string into the buffer.

mdlDialog_mlTextTopRowNumber gets the number of the line being displayed in
position zero.

Color Picker Item
The color picker item lets the user select one color from a palette of 255 choices. It is a
small colored square surrounded by a beveled rectangle. It has an optional label that is
right-justified next to the left edge of the beveled rectangle. This label is usually
omitted since color picker items usually have an associated text item to their left.

When the user presses the data button while the cursor is in the beveled rectangle, a
palette of 255 colored squares displays. The user can then select a new color by
releasing the data button while the cursor is in one of the 255 squares. If the user
16-38 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item list specification
releases the data button while the cursor is outside of the popped-up color palette, the
current color associated with the color picker item is not changed.

Item list specification
The DialogItemRsc field extent specifies the location of the color picker. The x
position specifies the location of the left side of the color picker item’s 3D beveled
rectangle. The y position specifies both the top of the 3D beveled rectangle. Width and
height should be set to 0. Setting them to 0 ensures that the color picker item will look
the same in different dialog boxes. The default width or height is the height of the
current dialog font.

The type field should be ColorPicker.

The ID determines the DItem_ColorPickerRsc instance to load.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field can override the label contained in the DItem_ColorPickerRsc
instance.

The auxInfo field can currently override only the access string contained in the
DItem_ColorPickerRsc instance.

The following is an example of a color picker item list specification:

{{XC, YC, 0, 0}, ColorPicker, COLORPICKERID_ElementColor, ON, 0, "", ""}

Item resource specification
The color picker item is defined in a resource file with the following structure:

typedef struct ditem_colorpickerrsc
{

ULong commandNumber;
ULong commandSource;
long synonymsId;
ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;
long associatedTextId;
ULong mask;
MicroStation MDL Programmer’s Reference Guide 16-39

Standard Dialog Box Items
Item hook function messages
#if defined (resource)
char label[];
char accessStr[];

#else
long labelLength;
char label[1];

#endif

} DItem_ColorPickerRsc;

The DItem_ColorPickerRsc structure has the following unique fields. (See “Common
item resource fields” for a description of any field not in this table).

The following is an example of a color picker item resource. Defined in MicroStation’s
resource file, this item is used in the Element Attributes dialog box.

DItem_ColorPickerRsc COLORPICKERID_ElementColor=
{

CMD_ACTIVE_COLOR, MCMD, SYNONYMID_ElementColor, NOHELP, MHELP,
NOHOOK, NOARG, TEXTID_ElementColor, NOMASK, "","tcb->symbology.color"

};

Item hook function messages
The following messages are sent to item hook functions that are attached to color
picker items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_INIT

DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_BUTTON

DITEM_MESSAGE_SYNCHRONIZE

Field Description

associatedTextId This field specifies the resource ID of a text item that will be associated
with the color picker item. As the user drags the mouse over the
popped-up color palette, the associated text item will be dynamically set
to the index of the color square the cursor is on.

mask mask indicates the bits of the variable specified by accessStr that are
used to determine the current color index. Usually, mask should be set
to NOMASK (defined as 0xFFFFFFFF), which indicates that the entire
variable will be used to derive the color index.

accessStr For a color picker, accessStr specifies a variable used to determine the
current color index.
16-40 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Color picker item functions
DITEM_MESSAGE_GETSTATE

DITEM_MESSAGE_SETSTATE

DITEM_MESSAGE_STATECHANGED

DITEM_MESSAGE_QUEUECOMMAND

Color picker item functions
mdlDialog_colorPickerGetInfo retrieves detailed information about a color picker
item.

mdlDialog_colorPickerSetInfo sets various aspects of a color picker item.

Level Map Item
The level map item shows the on/off display state of MicroStation’s design file levels
within a level map variable. A level map variable is an array of four short integers with
each bit designating the on/off display state of a single level. The least significant bit of
the first array element corresponds to the display state of level 1.

The level map item displays as an eight by eight array of numbers ranging from 1 to
63. The user turns on a level by single-clicking the data button while the cursor is over
the number corresponding to the level. A range of levels is selected when the mouse is
dragged over a range of numbers. Levels that are turned on are surrounded by a black
rectangle. Dragging the data button with the shift button down will select a rectangular
range of levels.

The active level is indicated by setting the activeLevelAccessStr field. This level will
display with a surrounding black circle instead of a rectangle. The user selects the
active level by double-clicking the data button. The display of the active level cannot
be turned off.
MicroStation MDL Programmer’s Reference Guide 16-41

Standard Dialog Box Items
Item list specification
Item list specification
The DialogItemRsc field extent specifies the location of the level map item. Since the
width and height of a level map item is fixed, extent.width and extent.height
should be set to 0.

The type field should be LevelMap.

The ID determines the DItem_LevelMapRsc instance to load.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field can override the label contained in the DItem_LevelMapRsc instance.

The auxInfo field can currently override only the access string contained in the
DItem_LevelMapRsc instance.

The following is an example of a level map item list specification:

{{XC, YC, 0, 0}, LevelMap, LEVELMAPID_ViewLevels, ON, 0, "", ""}

Item resource specification
The level map item is defined in a resource file with the following structure:

typedef struct ditem_levelmaprsc
{

ULong helpInfo;
ULong helpSource;

#if defined (resource)
char label[];
char accessStr[];
char activeLevelAccessStr[];

#else
long labelLength;
char label[1];

#endif

} DItem_LevelMapRsc;
16-42 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
The DItem_LevelMapRsc structure has the following unique fields. (See “Common item
resource fields” for a description of any field not in this table).

The following is an example of a level map item resource. This item is used in the
View Levels dialog box, and is defined in MicroStation’s resource file.

DItem_LevelMapRsc LEVELMAPID_ViewLevels=
{

NOHELP, MHELP, "View Levels",
"msDialogState.viewLevelsP->levels",
"msDialogState.viewLevelsP->activeLevel"

};

Item hook function messages
The level map item cannot have an associated item hook function.

Level map item functions
mdlDialog_levelMapGetInfo retrieves detailed information about a level map item.

mdlDialog_levelMapSetInfo sets various aspects of a level map item.

Menu Bar Item
The menu bar item is used to create a narrow rectangular region, across the top of a
dialog box, that contains multiple pull-down menus. It is really a composite item. The
menu bar itself is simply a placeholder for a number of pull-down menus. There are
currently three types of pull-down menus: text, option and color picker menus. These
pull-down menus are discussed in their own sections.

Field Description

accessStr Represents a C expression that references a level map variable
(an array of four short integers).

activeLevel-AccessStr Represents a C expression that references a variable that
contains the current active level. The active level will be
surrounded with a circle and is selected with double-click of
the data button. If an active level is not applicable, specify an
empty string for this field.
MicroStation MDL Programmer’s Reference Guide 16-43

Standard Dialog Box Items
Item list specification
Item list specification
The DialogItemRsc field extent is unused for menu bar items. Menu bars always go at
the top of a dialog box and extend across its entire width. It should be set
to {0, 0, 0, 0}.

The type field should be MenuBar.

The ID determines the DItem_MenuBarRsc instance to load.

The attributes field is ignored for menu bar items because the menu bar is always
enabled and displayed. The individual pull-down menus can be disabled however.

The itemArg field is unused and should usually be set to 0.

The label field is unused and should be set to "".

The auxInfo field is unused and should be set to "".

The following is an example of a menu bar item list specification:

{{0, 0, 0, 0}, MenuBar, MENUBARID_Main, ON, 0, "", ""}

Item resource specification
The menu bar item is defined in a resource file with the following structure:

typedef struct ditem_menubaritemrsc
{

long type;
long ID;

} DItem_MenuBarItemRsc;

typedef struct ditem_menubarrsc
{
long itemHookId;
long itemHookArg;

#if defined (resource)
DItem_MenuBarItemRsc menuBarItems[];

#else
long nMenus;
DItem_MenuBarItemRsc pulldownMenus[1];

#endif

} DItem_MenuBarRsc;

The only unique field in the DItem_MenuBarRsc structure is the array of
DItem_MenuBarItemRsc that is the menu bar item’s list of pull-down menus.
16-44 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
The DItem_MenuBarItemRsc structure has the following unique fields. (See “Common
item resource fields” for a description of any field not in this table.)

The following is an example of a menu bar item resource. This item is the MicroStation
Command window menu bar, and is defined in MicroStation’s resource file.

DItem_MenuBarRsc MENUBARID_Main=
{

HOOKITEMID_MenuBar_CommandWindow, NOARG,
{

{PulldownMenu, PULLDOWNMENUID_File},
{PulldownMenu, PULLDOWNMENUID_Edit},
{PulldownMenu, PULLDOWNMENUID_Element},
{PulldownMenu, PULLDOWNMENUID_Settings},
{PulldownMenu, PULLDOWNMENUID_View},
{PulldownMenu, PULLDOWNMENUID_Palettes},
{PulldownMenu, PULLDOWNMENUID_User},
{PulldownMenu, PULLDOWNMENUID_Help},

}
};

Item hook function messages
The following messages are sent to item hook functions that are attached to menu bar
items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_BUTTON

Menu bar item functions
mdlDialog_menuBarAddAppMenu adds the Applications pulldown menu to the
command window menu bar.

mdlDialog_menuBarAddCmdWinMenu adds a pulldown menu to the command window
menu bar.

Field Description

type This field is the type of pull-down menu to include in the menu bar
item.

id This field is the resource ID of the pull-down menu to include in the
menu bar.
MicroStation MDL Programmer’s Reference Guide 16-45

Standard Dialog Box Items
Menu bar item functions
mdlDialog_menuBarAttachMenu adds a pulldown menu to a menu bar.

mdlDialog_menuBarDeleteCmdWinMenu deletes a pulldown menu from the command
window menu bar.

mdlDialog_menuBarDeleteAllItems deletes all the subitems from a specified pull-
down menu.

mdlDialog_menuBarDeleteItem deletes a subitem from a specified pull-down menu.

mdlDialog_menuBarDeleteAllMenus deletes all the menus from a menu bar.

mdlDialog_menuBarDeleteMenu deletes an entire pull-down menu from a menu bar
item.

mdlDialog_menuBarDetachMenu removes a pulldown menu from a menu bar.

mdlDialog_menuBarFind finds a menu bar in a dialog box.

mdlDialog_menuBarFindAppMenu finds the Applications pulldown menu in the
command window menu bar.

mdlDialog_menuBarFindMenu finds a pulldown menu in a menu bar.

mdlDialog_menuBarFindItem finds a particular kind of pull-down menu item based on
a search ID.

mdlDialog_menuBarGetCmdWinP gets a pointer to a command window menu bar.

mdlDialog_menuBarGetItem gets a pointer to a pull-down menu item.

mdlDialog_menuBarGetMenu gets a pointer to a pull-down menu.

mdlDialog_menuBarGetNItems returns the number of items in a particular pull-down
menu.

mdlDialog_menuBarGetNMenus returns the number of pulldown menus in a particular
menu bar.

mdlDialog_menuBarGetSelection retrieves information about the menu item that was
last selected from a particular menu bar.

mdlDialog_menuBarInsertMenu inserts a pull-down menu into a menu bar.

mdlDialog_menuBarInsMenu inserts a pull-down menu into a menu bar.

mdlDialog_menuBarMenuGetEnabled gets the state (enabled or disabled) of a menu.
16-46 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Text Pull-down Menu
mdlDialog_menuBarMenuSetEnabled sets the state (enabled or disabled) of a pull-down
menu.

mdlDialog_menuBarMenuGetTitle gets the title of a pull-down menu.

mdlDialog_menuBarMenuSetTitle sets the title of a pull-down menu.

Text Pull-down Menu
Text pull-down menus can contain items that display as text strings.

These items can have attached submenus. These submenus are indicated with a right-
pointing triangle on the left side of the menu item. Text pull-down menus are usually
used to activate a command action. Most pull-down menus in MicroStation’s Command
window are text pull-downs.

Item resource specification
The text pull-down menu item is defined in a resource file with the following structure:

typedef struct ditem_pulldownmenuitemrsc
{
#if defined (resource)

char label[];
ULong accelerator;
byte enabled;
byte mark;
long subMenuType;
long submenuId;
ULong helpInfo;
char helpTaskId[];
long pulldownItemHookId;
long searchId; /* used to search for item */
ULong commandNumber;
char commandTaskId[];
char unparsed[];

#else
long labelLength;
MicroStation MDL Programmer’s Reference Guide 16-47

Standard Dialog Box Items
Item resource specification
char label[1];
#endif

} DItem_PulldownMenuItemRsc;

typedef struct ditem_pulldownmenursc
{

ULong helpInfo;
#if defined (resource)

char helpSource;
long pulldownHookId;
ULong attributes;
char menuTitle[];
DItem_PulldownMenuItemRsc pulldownItems[];

#else
long helpTaskLength;
char helpTaskId[1];

#endif

} DItem_PulldownMenuRsc;

The DItem_PulldownMenuRsc structure has the following unique fields. (See “Common
item resource fields” for a description of any field not in this table.)

The following table lists possible values for the attributes field (described above) and
the meaning of those values:

Field Description

attributes Specifies the attributes of the text pull-down menu. This field will
normally be ON | ALIGN_LEFT and is constructed by combining the
constants from the following table with the logical OR operator:

menuTitle Contains the title of the menu. This field should be set to "" if the text
pull-down menu is a submenu. (In this case, its title cannot display.)
Put a tilde ‘~’ before the character in the title that will be the mnemonic.
The mnemonic is the key the user presses to activate the menu item
when navigating the menu bar with the keyboard.

pulldownItems Represents an array of DItem_PulldownMenuItemRsc. See the next table
for a description of the DItem_PulldownMenuItemRsc structure.

attributes Value Meaning

ON The text pull-down menu will be initially enabled.

OFF All subitems in the text pull-down menu will be disabled
(dimmed). The title of the menu will also be dimmed (if the
pull-down menu is not a submenu).
16-48 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
The DItem_MenuBarItemRsc structure has the following unique fields. (See “Common
item resource fields” for a description of any field not in this table).

ALIGN_LEFT Aligns the pull-down menu on the left side of the menu bar.
This attribute is ignored for submenus.

ALIGN_RIGHT Aligns the pull-down menu on the right side of the menu bar.
By convention, only a Help menu should be right-aligned. This
attribute is ignored for submenus.

Field Description

label Specifies the text string that will display as the menu’s item.
Put a tilde ‘~’ before the character in the title that will be the
mnemonic. The mnemonic is the key the user presses to activate
the menu item when navigating the menu bar with the keyboard.

accelerator Specifies the virtual key code to use as the menu item’s accelerator.
If the dialog box in which this menu resides has the input focus,
pressing the accelerator key will activate the menu item.

enabled Specifies whether the menu item is initially enabled. Usually this
field should be ON (enabled).

mark Specifies the type of graphic mark to place on the left side of the
menu item before the text string. This field can have one of the
values listed in the mark table below.

subMenuType Specifies the type of the menu item’s submenu. The choices are
NOSUBMENU, PulldownMenu, PulldownOptionMenu and
PulldownCPickerMenu.

subMenuId Specifies the resource ID of the menu item’s submenu. If no
submenu is needed, use 0 or NOSUBMENU.

pulldownItemHookId Specifies the ID of an item hook function.

attributes Value Meaning
MicroStation MDL Programmer’s Reference Guide 16-49

Standard Dialog Box Items
Item resource specification
The following table lists possible values for the mark field (described above) and the
meaning of those values:

The following is an example of a text pull-down menu resource. This item is the
MicroStation Command window Element menu, and is defined in MicroStation’s
resource file.

DItem_PulldownMenuRsc PULLDOWNMENUID_Element=
{

NOHELP, MHELP, NOHOOK, ON | ALIGN_LEFT, "Element",
{
{"~Color", NOACCEL, ON, NOMARK, PulldownCPickerMenu,

PULLDOWNCPICKERMENUID_ElementColor, NOHELP,MHELP, NOHOOK,
MENUSEARCHID_Element_Color, NOCMD, MTASKID,""},

{"~Style", NOACCEL, ON, NOMARK, PulldownOptionMenu,
PULLDOWNOPTIONMENUID_ElementStyle, NOHELP,MHELP, NOHOOK,
MENUSEARCHID_Element_Style, NOCMD, MTASKID,""},

searchId Specifies a user-definable number that should be unique in each
menu. Many functions use this number to find a menu item. This
number is more useful than specifying a menu item index when the
contents of the menu have been dynamically changed.

commandTaskId Specifies the task that will execute the command associated with
commandNumber.
Setting comandTaskId to OTASKID, which is #defined to be an
empty string, indicates that the task that owns (originally creates)
the dialog should execute the command.
Setting comandTaskId to MTASKID, which is #defined to be ‘+’,
indicates that MicroStation should be used to execute the command.
(commandNumber must be a MicroStation command number defined
in cmdlist.h.)
If you need to specify a task different than the owner or
MicroStation, put the task name here.

mark Value Meaning

NOMARK No mark will display.

MARK_TOGGLE_OUT A raised toggle button will display.

MARK_TOGGLE_IN A recessed and filled toggle button will display.

MARK_RADIO_OUT A raised radio button will display.

MARK_RADIO_IN A recessed and filled radio button will display.

MARK_RIGHT_ARROW A right-pointing triangle will display.

Field Description
16-50 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
{"~Weight", NOACCEL, ON, NOMARK, PulldownOptionMenu,
PULLDOWNOPTIONMENUID_ElementWeight, NOHELP,MHELP, NOHOOK,
MENUSEARCHID_Element_Weight, NOCMD, MTASKID,""},

{"~Info", NOACCEL, ON, NOMARK, 0, NOSUBMENU, NOHELP,MHELP, NOHOOK,
MENUSEARCHID_Element_Info, CMD_ANALYZE, MTASKID,""},

{"-", NOACCEL, OFF,NOMARK,0,NOSUBMENU,NOHELP,MHELP,
NOHOOK, NOARG, NOCMD, MTASKID,""},

{"~Attributes",NOACCEL, ON, NOMARK, 0, NOSUBMENU,NOHELP,MHELP, NOHOOK,
MENUSEARCHID_Element_Attributes, CMD_DIALOG_ATTRIBUTES,
MTASKID,""},

{"-", NOACCEL, OFF,NOMARK,0,NOSUBMENU,NOHELP,MHELP, NOHOOK,
NOARG,NOCMD, MTASKID,""},

{"~B-splines",NOACCEL, ON, NOMARK, 0, NOSUBMENU,NOHELP,MHELP, NOHOOK,
MENUSEARCHID_Element_BSplines, CMD_MDL_LOAD, MTASKID,
"Splines Element"},

{"~Dimensions",NOACCEL, ON, NOMARK, PulldownMenu,
PULLDOWNMENUID_SubDimension, NOHELP, MHELP, NOHOOK,
MENUSEARCHID_Element_Dimensions, CMD_DIALOG_DIMPLACE,
MTASKID,""},

{"~Multi-lines",NOACCEL, ON, NOMARK, 0, NOSUBMENU, NOHELP, MHELP,
NOHOOK, MENUSEARCHID_Element_MultiLines,
CMD_DIALOG_MULTILINE, MTASKID, ""},

{"~Text", NOACCEL, ON, NOMARK, 0, NOSUBMENU,NOHELP,MHELP, NOHOOK,
MENUSEARCHID_Element_Text, CMD_DIALOG_TEXT, MTASKID,""},

}
};

Item hook function messages
The following messages are sent to item hook functions that are attached to text pull-
down menus:

DITEM_MESSAGE_DRAW

DITEM_MESSAGE_BUTTON

DITEM_MESSAGE_QUEUECOMMAND

Text pull-down menu specific functions
mdlDialog_textPDMItemGetInfo retrieves detailed information about a particular
menu item in a text pull-down menu.
MicroStation MDL Programmer’s Reference Guide 16-51

Standard Dialog Box Items
Option Pull-down Menu
mdlDialog_textPDMItemSetInfo sets various aspects of a menu item in a text pull-
down menu.

mdlDialog_textPDMItemInsert inserts a menu item into a text pull-down menu.

mdlDialog_textPDMItemIns inserts a menu item into a text pull-down menu.

mdlDialog_textPDMItemSetEnabled changes a text pull-down menu item’s state
(enabled or disabled).

mdlDialog_textPDMItemSetLabel sets a text pull-down menu item’s text label (the
item’s displayed text string).

mdlDialog_textPDMItemSetMark sets a text pull-down menu item’s mark.

Option Pull-down Menu
Option pull-down menus are similar to text pull-down menus, except that they add the
capability to include non-text menu items. The currently selected choice is indicated by
a right-pointing triangle on the left side of an option menu item. Option pull-down
menus can display either text strings or icons, but not both. Option pull-down menus
cannot have submenus.

Item resource specification
The option pull-down menu item is defined in a resource file with the following
structure:

typedef DItem_OptionButtonItemRsc DItem_PulldownOptionItemRsc;
typedef struct ditem_pulldownoptionmenursc
{

long synonymsId;
ULong helpInfo;
ULong helpSource;
long pulldownHookId;
ULong attributes;

#if defined (resource)
char menuTitle[];
char accessStr[];
DItem_PulldownOptionItemRsc pulldownOptionItems[];

#else
long menuTitleLength;
16-52 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
char menuTitle[1];
#endif

} DItem_PulldownOptionMenuRsc;

The DItem_PulldownOptionMenuRsc structure has the following unique fields. (See
“Common item resource fields” for a description of any field not in this table.)

The following table lists possible values for the attributes field (described above) and
the meaning of those values:

The following is an example of an option pull-down menu resource. This item is the
MicroStation Command window Element Style submenu, and is defined in
MicroStation’s resource file.

Field Description

attributes Specifies the attributes of the option pull-down menu. This field will
normally be ON | ALIGN_LEFT and is constructed by combining the
constants from the attributes table (below) with the logical OR
operator.

menuTitle Contains the title of the menu. It should be set to "" if the option
pull-down menu is a submenu. (In this case, its title cannot
display).
Put a ‘~’ before the character in the title that will be the mnemonic.
The mnemonic is the key the user presses to display the menu
when navigating the menu bar with the keyboard.

pulldownOptionItems Represents an array of DItem_PulldownOptionItemRsc. This
structure is the same as the DItem_OptionButtonItemRsc structure.
See the description of the option button item for more information
on the fields of this structure.

attributes Value Meaning

ON The option pull-down menu will be initially enabled.

OFF All subitems in the option pull-down menu will be disabled (dimmed).
The title of the menu will also be dimmed (if the pull-down menu is
not a submenu).

ALIGN_LEFT This attribute is ignored for submenus. The pull-down menu will be
aligned on the left side of the menu bar.

ALIGN_RIGHT This attribute is ignored for submenus. The pull-down menu will be
aligned on the right side of the menu bar. By convention, only a Help
menu should be right aligned.
MicroStation MDL Programmer’s Reference Guide 16-53

Standard Dialog Box Items
Item hook function messages
DItem_PulldownOptionMenuRsc PULLDOWNOPTIONMENUID_ElementStyle=
{

NOSYNONYM, HELPID_TEXT_ElementStyle, MHELPTOPIC,
HOOKITEMID_StylePulldown_CmdWindow, ON | ALIGN_LEFT,
"~Line Style", "",

{
{Icon, ICONID_LineStyle0, CMD_ACTIVE_STYLE_CSELECT, MCMD, 0, NOMASK,
ON, "~0"},
{Icon, ICONID_LineStyle1, CMD_ACTIVE_STYLE_CSELECT, MCMD, 0, NOMASK,
ON, "~1"},
{Icon, ICONID_LineStyle2, CMD_ACTIVE_STYLE_CSELECT, MCMD, 0, NOMASK,
ON, "~2"},
{Icon, ICONID_LineStyle3, CMD_ACTIVE_STYLE_CSELECT, MCMD, 0, NOMASK,
ON, "~3"},
{Icon, ICONID_LineStyle4, CMD_ACTIVE_STYLE_CSELECT, MCMD, 0, NOMASK,
ON, "~4"},
{Icon, ICONID_LineStyle5, CMD_ACTIVE_STYLE_CSELECT, MCMD, 0, NOMASK,
ON, "~5"},
{Icon, ICONID_LineStyle6, CMD_ACTIVE_STYLE_CSELECT, MCMD, 0, NOMASK,
ON, "~6"},
{Icon, ICONID_LineStyle7, CMD_ACTIVE_STYLE_CSELECT, MCMD, 0, NOMASK,
ON, "~7"},
{Icon, ICONID_LineStyleCustom, CMD_DIALOG_LSTYLESETUP, MCMD, 0, NOMASK,
ON, "~c"},
{Icon, ICONID_LineStyleEdit, CMD_DIALOG_LSTYLEEDIT, MCMD, 0, NOMASK,
ON, "~e"},
}
};

Item hook function messages
The following messages are sent to item hook functions that are attached to option
pull-down menus:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_BUTTON

DITEM_MESSAGE_GETSTATE

DITEM_MESSAGE_SETSTATE

DITEM_MESSAGE_STATECHANGED

DITEM_MESSAGE_QUEUECOMMAND
16-54 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Option pull-down menu functions
Option pull-down menu functions
mdlDialog_optionPDMItemGetInfo retrieves detailed information about a particular
menu item in an option pull-down menu.

mdlDialog_optionPDMItemSetInfo sets various aspects of a menu item in an option
pull-down menu.

mdlDialog_optionPDMItemInsert inserts a menu item in an option pull-down menu.

mdlDialog_optionPDMItemSetEnabled changes an option pull-down menu item’s state
(enabled or disabled).

Color Picker Pull-down Menu
The color picker pull-down menu acts in a similar manner to the standard color picker
item that is placed in the content area of dialog boxes. It selects a current color index.
The color picker pull-down menu cannot have submenus.

Item resource specification
The color picker pull-down menu item is defined in a resource file with the following
structure:

typedef struct ditem_pulldowncpickermenursc
{
long synonymsId;
ULong helpInfo;
ULong helpSource;
long pulldownHookId;
ULong attributes;
ULong commandNumber;
ULong commandSource;
ULong mask;

#if defined (resource)
char menuTitle[];
MicroStation MDL Programmer’s Reference Guide 16-55

Standard Dialog Box Items
Item resource specification
char accessStr[];
#else

long menuTitleLength;
char menuTitle[1];

#endif

} DItem_PulldownCPickerMenuRsc;

The DItem_PulldownCPickerMenuRsc structure has the following unique fields. (See
“Common item resource fields” for a description of any field not in this table.)

The following table lists possible values for the attributes field (described above) and
the meaning of those values:

The following is an example of a color picker pull-down menu resource. This item is
the MicroStation Command window Element Color submenu, and is defined in
MicroStation’s resource file.

Field Description

attributes Specifies the attributes of the color picker pull-down menu. It will
normally be ON | ALIGN_LEFT and is constructed by combining the
constants from the attributes table (below) with the logical OR operator.

mask Indicates which bits of the variable specified by accessStr are used to
determine the current color index. Usually, mask should be set to NOMASK
(defined to be 0xFFFFFFFF), which indicates that the entire variable will
be used to determine the index.

menuTitle Contains the title of the menu. This field should be set to "" if the color
picker pull-down menu is a submenu. (In this case, its title cannot
display).
Put a ‘~’ before the character in the title that will be the mnemonic. The
mnemonic is the key the user presses to display the menu when
navigating the menu bar with the keyboard.

attributes Value Meaning

ON The color picker pull-down menu will be initially enabled.

OFF All subitems in the color picker pull-down menu will be
disabled (unselectable). The title of the menu will also be
dimmed (if the pull-down menu is not a submenu).

ALIGN_LEFT This is the default setting and should always be set. The pull-
down menu will be aligned on the left side of the menu bar.
16-56 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
DItem_PulldownCPickerMenuRsc PULLDOWNCPICKERMENUID_ElementColor=
{

NOSYNONYM, NOHELP, MHELP, HOOKITEMID_ColorPicker_CmdWindow, ON,
CMD_ACTIVE_COLOR_CSELECT, MCMD, NOMASK, "", "tcb->symbology.color"

};

Item hook function messages
The following messages are sent to item hook functions that are attached to color
picker pull-down menus:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_BUTTON

DITEM_MESSAGE_GETSTATE

DITEM_MESSAGE_SETSTATE

DITEM_MESSAGE_STATECHANGED

DITEM_MESSAGE_QUEUECOMMAND

Color picker pull-down menu functions
There are no color picker pull-down menu functions.

Tool Palettes
Tool palettes contain icons that, when activated, add a command to MicroStation’s
input queue. There are two types of MicroStation’s tool palettes: icon command frames
and icon command palettes.

Icon command palettes can contain only icon commands. These icon commands can
have associated items. These items will display when the icon is selected and are the
icon’s popdown items. (See the MicroStation User’s Guide for an explanation of these
items).

Icon command frames can contain icon commands or icon command palettes. The
icon commands that are directly in a command frame cannot have associated item lists.
Each icon command palette in a command frame has a current icon, the icon
command from the palette that is displayed in the parent icon command frame. When
MicroStation MDL Programmer’s Reference Guide 16-57

Standard Dialog Box Items
Icon command frame
the data button is pressed while the cursor is over a icon command palette in a
command frame, the full palette is popped up. The user can then select an icon
command from the palette, or tear off the palette. (To tear off a palette, drag the cursor
off from the palette until an outline of the palette displays. The palette can then be
placed anywhere on the screen).

Icon command frame
An icon command frame should be the only item in a dialog box. Icon command
frames should usually be vertically oriented (which means that they have more rows
than columns).

Item list specification

The DialogItemRsc field extent is unused for icon command frame items. The dialog
box that contains an icon command frames is resized so the command frame fills the
dialog box. The extent should be set to {0, 0, 0, 0}.

The type field should be IconCmdFrame.

The ID determines the DItem_IconCmdFrameRsc instance to load.

The attributes are ignored for icon command frame items. The icon command frame
is always enabled and displayed.

The itemArg field is unused and should usually be set to 0.

The label field is unused and should be set to ““.

The auxInfo field is unused and should be set to ““.

The following is an example of a icon command frame item list specification:

{{0, 0, 0, 0}, IconCmdFrame, ICONCMDFRAMEID_Main, ON, 0, "", ""}

Item resource specification

The icon command frame item is defined in a resource file with the following structure:

typedef struct ditem_iconcmdframersc
{

int nColumns;
int nRows;
ULong helpInfo;
ULong helpSource;

#if defined (resource)
16-58 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
char label[];
DialogItemSpec iconPieces[];

#else
long labelLength;
char label[1];

#endif

} DItem_IconCmdFrameRsc;

The DItem_IconCmdFrameRsc structure has the following unique fields. (See “Common
item resource fields” for a description of any field not in this table).

The following is an example of a icon command frame item resource. This item is the
MicroStation Main tool box, and is defined in MicroStation’s resource file.

DItem_IconCmdFrameRsc ICONCMDFRAMEID_Main=
{

2, 10, NOHELP, MHELP, "Main",
{

{IconCmd, ICONCMDID_ChooseElement},
{IconCmdPalette, ICONCMDPALETTEID_Line},
{IconCmdPalette, ICONCMDPALETTEID_Arc},
{IconCmdPalette, ICONCMDPALETTEID_LineString},
{IconCmd, ICONCMDID_PlaceOpenBSpline},
{IconCmdPalette, ICONCMDPALETTEID_Polygon},
{IconCmdPalette, ICONCMDPALETTEID_Fillet},
{IconCmdPalette, ICONCMDPALETTEID_Circle},
{IconCmdPalette, ICONCMDPALETTEID_Point},
{IconCmdPalette, ICONCMDPALETTEID_Cell},
{IconCmdPalette, ICONCMDPALETTEID_EnterData},
{IconCmdPalette, ICONCMDPALETTEID_Text},
{IconCmdPalette, ICONCMDPALETTEID_MirrorElement},
{IconCmdPalette, ICONCMDPALETTEID_CopyElement},
{IconCmdPalette, ICONCMDPALETTEID_Change},
{IconCmdPalette, ICONCMDPALETTEID_Modify},

Field Description

nColumns Specifies the number of columns in the icon command frame.

nRows Specifies the number of rows in the icon command frame.

label Specifies the title of the icon command frame. The dialog box title will
be set to this string’s value.

iconPieces Specifies the contents of the icon command frame. iconPieces is an
array of DialogItemSpec members. The type field of an iconPieces
member can be either IconCmd or IconCmdPalette. The id field of an
iconPieces member indicates the DItem_IconCmdRsc or
DItem_IconCmdPaletteRsc instance to load.
MicroStation MDL Programmer’s Reference Guide 16-59

Standard Dialog Box Items
Item hook function messages
{IconCmdPalette, ICONCMDPALETTEID_Chain},
{IconCmdPalette, ICONCMDPALETTEID_Drop},
{IconCmdPalette, ICONCMDPALETTEID_View},
{IconCmd, ICONCMDID_DeleteElement},

}
};

Item hook function messages

The icon command frame item cannot have an associated item hook function.

Icon cmd frame item functions

mdlDialog_icFrameGetItemInfo retrieves detailed information about an item in an
icon command frame.

mdlDialog_icFrameSetItemInfo sets various aspects of an item in an icon command
frame.

mdlDialog_icFrameGetNItems returns the number of items in an icon command frame.

mdlDialog_icFrameGetNSubItems returns the number of subitems in an icon command
frame palette item.

mdlDialog_icFrameSelectIcon selects (highlights) an icon in an icon command
frame/palette.

Icon command palette
Icon command palettes are different from other items in that no dialog box is
associated with them when their resources are defined. In fact, they cannot be placed
directly inside a dialog box by including them in dialog item list specification. Instead
only an icon command palette resource is created in a resource file. The special
function mdlDialog_openPalette is then used to display the palette. At that point, the
dialog box is automatically created on-the-fly to contain the specified icon command
palette.

Icon command palettes should usually be horizontally oriented. (They should have
more columns than rows.) Horizontally oriented palettes simplify laying out popdown
items in the palette’s icon commands.

Item resource specification

The icon command palette item is defined in a resource file with the following
structure:
16-60 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
typedef struct ditem_iconcmdpalettersc
{

int nColumns;
int nRows;
int defaultItem;
ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;

#if defined (resource)
char label[];
int iconCmds[];

#else
long labelLength;
char label[1];

#endif

} DItem_IconCmdPaletteRsc;

The DItem_IconCmdPaletteRsc structure has the following unique fields. (See
”Common item resource fields” for a description of any field not in this table).

The following is an example of an icon command palette item resource. This item is
the MicroStation Lines tool box, and is defined in MicroStation’s resource file.

DItem_IconCmdPaletteRscICONCMDPALETTEID_Line=
{

8, 2, 0, NOHELP, MHELP, NOHOOK, NOARG, "Lines",
{

ICONCMDID_PlaceLine,
ICONCMDID_PlaceLineAA,
ICONCMDID_ConstBisectorLine,
ICONCMDID_ConstBisectorAngle,

Field Description

nColumns Specifies the number of columns in the icon command palette.

nRows Specifies the number of rows in the icon command palette.

defaultItem Specifies the index of the icon command to display when the icon
command palette is contained in an icon command frame.

label Specifies the title of the icon command palette. When the icon palette
displays in its dialog box, this string sets the dialog box’s title.

iconCmds Specifies the contents of the icon command palette. iconCmds is an array
of DItem_IconCmdRsc resource ids. This array determines the
DItem_IconCmdRsc instances to load. The number of entries in the
iconCmds array can be less than nRows * nColumns, in which case the
empty slots in the palette are left blank when the palette is displayed.
MicroStation MDL Programmer’s Reference Guide 16-61

Standard Dialog Box Items
Item hook function messages
ICONCMDID_PlaceTerminator,
ICONCMDID_ConstLineMin,
ICONCMDID_ConstTanPerp,
ICONCMDID_ConstTanBetween,
ICONCMDID_ConstLineAAToPt,
ICONCMDID_ConstLineAAFromPt,
ICONCMDID_ConstLineAAToPtK,
ICONCMDID_ConstLineAAFromPtK,
ICONCMDID_ConstPerpToElem,
ICONCMDID_ConstPerpFromElem,
ICONCMDID_ConstTanToElem,
ICONCMDID_ConstTanFromElem,

}
};

Item hook function messages

No messages are sent to the item hook function.

Icon cmd palette item functions

mdlDialog_icPaletteGetItemInfo retrieves detailed information about a item in an
icon command palette.

mdlDialog_icPaletteSetItemInfo sets various aspects of an item in an icon command
palette.

mdlDialog_icPaletteGetNItems returns the number of items in an icon command
palette.

mdlDialog_icPaletteSelectIcon selects (highlights) an icon in an icon command
palette.

Icon command
Icon command items cannot be directly placed in a dialog box item list. They must be
referenced by an icon command palette item or an icon command frame item.

Each DItem_IconCmdRsc structure has associated IconCmdSmallRsc and
IconCmdLargeRsc instances. These resources contain the icon’s actual raster bitmaps.
These three resources are connected by making their resource IDs identical. For
example, if an instance of DItem_IconCmdRsc has an ID of 5, the IDs of the
corresponding IconCmdSmallRsc and IconCmdLargeRsc should also be 5.

For consistency with MicroStation’s icon commands, small icons should be 23 pixels
wide by 23 pixels high, and large icons should be 31 pixels wide by 31 pixels high.
16-62 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
Item resource specification

The icon command item is defined in a resource file with the following structure:

typedef struct ditem_iconcmdrsc
{

ULong helpInfo;

#if defined (resource)
char helpTaskId[];
ULong attributes;
ULong commandNumber;
char commandTaskId[];
char unparsed[]
char enabledAccessStr[];
DialogItemRsc iconItems[];

#else
long helpTaskLen;
char helpTaskId[1];

#endif

} DItem_IconCmdRsc;

The DItem_IconCmdRsc structure has the following unique fields. (See “Common item
resource fields” for a description of any field not in this table).

Field Description

attributes Specifies the attributes of the icon command. This field will normally be
0 and is constructed by combining the constants from the attributes
table (below) with the logical OR operator.

commandTaskId Specifies the task that will execute the command associated with
commandNumber.
Setting comandTaskId to OTASKID, which is #defined to be an empty
string, indicates that the task that owns (originally creates) the dialog
should execute the command.
Setting comandTaskId to MTASKID, which is #defined to be “+”, indicates
that MicroStation should be used to execute the command.
(commandNumber must be a MicroStation command number defined in
cmdlist.h.)
If you need to specify a task different than the owner or MicroStation,
put the task name here.
MicroStation MDL Programmer’s Reference Guide 16-63

Standard Dialog Box Items
Item resource specification
The following is an example of an icon command resource. This is the MicroStation
icon command for the keyin PLACE LINE ANGLE and can be found in the Lines tool
box. It is defined in MicroStation’s resource file.

DItem_IconCmdRsc ICONCMDID_PlaceLineAA=
{

NOHELP, MHELP, 0, CMD_PLACE_LINE_ANGLE, MTASKID, "", "",
{
 {{16*XC, GENY(1), 10*XC, 0}, Text, TEXTID_ActiveAngle,ON,0,"",""},
}

};

IconCmdSmallRsc ICONCMDID_PlaceLineAA=
{

23, 23, FORMAT_MONOBITMAP, BLACK_INDEX, "Pl Line At AA",
{

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00,
0x20, 0x00, 0x00, 0x80, 0x00, 0x02, 0x00, 0x00,
0x08, 0x00, 0x00, 0x20, 0x00, 0x00, 0x80, 0x00,

enabledAccessStr Is currently unused and should be set to ““.

iconItems An array of DialogItemRsc and the list of popdown dialog items
associated with the icon command. This list is created the same way that
a normal dialog item list is created. See the “DialogBoxRsc Structure”
and “DialogItemRsc Structure” sections in this chapter for more
information on specifying dialog item lists. Only icon commands
included in icon command palettes can have an item list. Icon command
frames will not display popdown item lists.
When used in an icon command item list specification, the extent
member of DialogItemRsc specifies positions relative to the bottom
left of the parent icon command palette, not the upper left corner of the
dialog box containing the icon command.

attributes Value Meaning

ICONCMDATTR_DONTSINGLESHOT Indicates that this icon command can not be double
clicked upon to enter single-shot operational mode. By
default, double-clicking on an icon causes MicroStation
to enter single-shot mode for the selected icon.

ICONCMDATTR_DONTAUTOSELECT Indicates that this icon resource should not be
highlighted (selected) when the command associated
with the icon is queued to MicroStation.

Field Description
16-64 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
0x02, 0x00, 0x00, 0x08, 0x82, 0x00, 0x21, 0x04,
0x00, 0x85, 0x1c, 0x02, 0x0a, 0x28, 0x08, 0x3e,
0xf8, 0x20, 0x45, 0x10, 0x80, 0x00, 0x01, 0x6d,
0xb6, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00,

}
};

IconCmdLargeRsc ICONCMDID_PlaceLineAA=
{

31, 31, FORMAT_MONOBITMAP, BLACK_INDEX, "Pl Line At AA",
{

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00,
0x00, 0x10, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00,
0x10, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x04, 0x60, 0x60, 0x00, 0x10,
0xc0, 0xc0, 0x00, 0x41, 0x81, 0x80, 0x01, 0x04,
0x84, 0x80, 0x04, 0x09, 0x09, 0x00, 0x10, 0x12,
0x12, 0x00, 0x40, 0x7e, 0x7e, 0x01, 0x00, 0x84,
0x84, 0x04, 0x01, 0x09, 0x08, 0x10, 0x00, 0x00,
0x00, 0x40, 0x00, 0x00, 0x00, 0x8c, 0xcc, 0xcc,
0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00,

}
};

Item hook function messages

The icon command item cannot have an associated item hook function.

Icon cmd item functions

mdlDialog_selectIconsById changes the selection state of an icon by its resource ID.

mdlDialog_selectIconsByIdNoMsg changes the selection state of an icon by its
resource ID but does not display the command message inthe command window.

mdlDialog_selectIconsByCmd changes the selection state of an icon by its command
number.

mdlDialog_selectIconsByCmdNoMsg changes the selection state of an icon by its
command number but does not display the command message inthe command
window.
MicroStation MDL Programmer’s Reference Guide 16-65

Standard Dialog Box Items
Palettes vs. tool boxes
Palettes vs. tool boxes
The default MicroStation user interface uses tool boxes rather than icon command
palettes. Still, palettes remain completely supported in MicroStation, but do not have
the advanced features of tool boxes.

As in the Microsoft Office products, tool boxes are resizable and dockable.
Additionally, tool boxes support tool tip and tool description help and allow items to
be grouped. To support docking and to preserve screen space, tool boxes do not have
pop-down fields. The Tool Settings dialog is used for this purpose.

Application developers are encouraged, but not required, to switch to tool boxes.

Tool Boxes

Notice that a tool box must be contained in a dialog box definition and that icon
command resources can be shared between MDL applications using the “owner=”
specification.

DialogBoxRsc TOOLBOXID_SmartTools=
{

DIALOGATTR_TOOLBOXCOMMON, 0, 0, NOHELP, MHELP, NOHOOK,
NOPARENTID, "",
{

{{0, 0, 0, 0}, ToolBox, TOOLBOXID_SmartTools, ON, 0, "", ""},
}

};

DItem_ToolBoxRsc TOOLBOXID_SmartTools=
{

NOHELP, MHELPTOPIC, NOHOOK, NOARG, 0, TXT_SmartToolsTitle,
{

{{0, 0, 0, 0}, IconCmd,ICONCMDID_SmartLine, ON, 0, "",
"owner=\"SMRTLINE\""},

{{0, 0, 0, 0}, IconCmd, ICONCMDID_DropElement, ON, 0, "",
"owner=\"DROP\""},

{{0, 0, 0, 0}, IconCmd, ICONCMDID_MatchElement, ON, 0, "",
"owner=\"MATCH\""},

{{0,0,0,0},IconCmd,ICONCMDID_DeleteElement,ON,1,"",""},
}

};

Example of a resized tool box.
16-66 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Converting Icon Palettes to Tool Boxes
Tool boxes utilize the exact same icon command resources (DItem_IconCmdRsc) used
by palettes. No icon rework is necessary. To add tool tip and tool description
information, an extended attributes resource must be added.

/* IconCmd resource w/ extended attributes to implement tool tip help */
DItem_IconCmdRsc ICONCMDID_PlaceMyLine=
{

NOHELP, OHELPTASKIDCMD, 0, CMD_PLACE_LINE, MTASKID, "", "",
{
}

}

extendedAttributes
{{
{EXTATTR_FLYTEXT,TXT_Flyover_PlaceMyLine}, /* Appears in statusarea */

{EXTATTR_BALLOON, TXT_Balloon_PlaceMyLine}, /* Appears in pop-up */
}};

For a frame to include a tool box, the extended frame resource
(DItem_IconCmdFrameXRsc) must be used. Note that a tool box containing items other
than icon command resources cannot be included in a frame.

/* Sample Tool Frame Dialog Box - IconCmdFrameX is the only item */
DialogBoxRsc DIALOGID_SampleToolFrame=
{

DIALOGATTR_DEFAULT | DIALOGATTR_NORIGHTICONS, 0, 0, NOHELP, MHELP,
NOHOOK, NOPARENTID, TXT_SampleFrame,
{

{{0,0,0,0}, IconCmdFrameX, ICONCMDFRAMEID_MainSample, ON, 0, "", ""},
}

};

DItem_IconCmdFrameXRsc ICONCMDFRAMEID_MainSample=
{

2, 2, NOHELP, MHELP, 0, TXT_SampleFrame,
{

{ToolBox, TOOLBOXID_Sample, "V550NEW"},
{ToolBox, TOOLBOXID_Polygons, MTASKID},
{ToolBox, TOOLBOXID_Ellipses, MTASKID},
{ToolBox, TOOLBOXID_Tags, MTASKID},

}
};

Converting Icon Palettes to Tool Boxes

To illustrate a simple case of conversion from an icon command palette to a tool box,
use the Lines-Sample icon command palette from the PALETTE MDL application. This
command palette is delivered with MicroStation V5 MDL examples.
MicroStation MDL Programmer’s Reference Guide 16-67

Standard Dialog Box Items
Converting Icon Palettes to Tool Boxes
/* Resource definition of the icon command palette shown below */
DItem_IconCmdPaletteRsc ICONCMDPALETTEID_LineSample=
{

7, 1, 0, NOHELP, MHELP, NOHOOK, NOARG, TXT_LinesSample,
{

ICONCMDID_SamplePlaceLine,
ICONCMDID_SamplePlaceLineAA,
ICONCMDID_SampleConstBisectLine,
ICONCMDID_SampleConstBisectAngle,
ICONCMDID_SampleConstLineMin,
ICONCMDID_SampleConstTanPerp,
ICONCMDID_SampleConstTanBetween,

}
};

The first step in the conversion is creating a dialog box resource definition for the tool
box. The dialog box resource contains one item, the tool box. Note that the dialog box
and tool box resources have the same resource identifier. Since tool boxes are really
just dialog boxes, you might want to differentiate dialog boxes from tool boxes in your
application. This can be accomplished by numbering your dialog boxes and tool boxes
with a different series of numbers. For example, start numbering dialog boxes with
resource identifier 100 and tool boxes with resource identifier 200.

DialogBoxRsc TOOLBOXID_LineSample=
{

/* tool box default attributes, (see dlogbox.h) */
DIALOGATTR_TOOLBOXCOMMON,0,0,NOHELP,MHELP,NO,NOPARENTID,TXT_Sample,
{

{{0, 0, 0, 0}, ToolBox, TOOLBOXID_LineSample, ON, 0, “”, “”},
}

};

Next, define the tool box resource by populating the DItem_ToolBoxRsc structure. This
structure is defined in dlogbox.h. The items contained in the tool box are declared in a
manner similar to declaring items within a dialog box, that is, by populating the
DialogItemRsc structure.

The auxiliary information field, (the last parameter) is NULL when reusing MicroStation
PowerDraft’s icon commands, but contains the string: “owner=\“PALETTE\”” for the
icon commands that belong to other MDL applications. The string, in quotes, that
follows the “owner=” string is the task identifier of the application that owns the icon
command. Since our PALETTE application owns the icon commands in this tool box,
we could have left the auxiliary information field blank. We chose to fill in the field

Resource Definition of the
icon command palette
from PALETTE.R.
16-68 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Converting Icon Palettes to Tool Boxes
with “owner=”PALETTE”” to show how we might reuse an icon command that exists in
some other MDL application. The only instance necessary to fill in this field is when an
application, other than MicroStation or your MDL application, owns the icon command.

The item argument field of the DialogItemRsc structure can be thought as a group
index. If all items in the dialog should be part of the same group, then assign the same
value to all instances of the item argument field. If the items should be in different
groups, then assign the same item argument value to all items within the group. The
group index should be defined in the dialog item list structure in ascending order.

DItem_ToolBoxRsc TOOLBOXID_LineSample=
{

/* DItem_ToolBoxRsc structure (see dlogbox.h) */
NOHELP, MHELPTOPIC, NOHOOK, NOARG, 0, TXT_Sample,
{

/* DialogItemRsc structure (see dlogbox.h) */
{{0, 0, 0, 0}, IconCmd, ICONCMDID_SamplePlaceLine, ON, 0, “”,

“owner=\”PALETTE\””},
{{0, 0, 0, 0}, IconCmd, ICONCMDID_SamplePlaceLineAA, ON, 0, “”,

“owner=\”PALETTE\””},
{{0, 0, 0, 0}, IconCmd, ICONCMDID_SampleConstBisectLine, ON, 1, “”,

“owner=\”PALETTE\””},
{{0,0,0,0}, IconCmd, ICONCMDID_SampleConstBisectAngle, ON, 1, “”,

“owner=\”PALETTE\””},
{{0, 0, 0, 0}, IconCmd, ICONCMDID_SampleConstLineMin, ON, 1, “”,

“owner=\”PALETTE\””},
{{0, 0, 0, 0}, IconCmd, ICONCMDID_SampleConstTanPerp, ON, 2, “”,

“owner=\”PALETTE\””},
{{0, 0, 0, 0}, IconCmd, ICONCMDID_SampleConstTanBetween, ON, 2, “”,

“owner=\”PALETTE\””},
}

};

With the above tool box resource definition, we have the tool boxes shown below:

There are two major differences between an icon command palette and a tool box:

• Tool boxes can be resized, (shown above) and docked to the edges of
the application window.

Tool box sized
horizontally.

Tool box sized
vertically.
MicroStation MDL Programmer’s Reference Guide 16-69

Standard Dialog Box Items
Adding a tool box
• All pop-down items that you may have associated with your icon
command will always be displayed in the tool settings window in
MicroStation PowerDraft.

Adding a tool box

Now that you have a handle on the tools necessary to build a tool box, let’s look at the
more complex case of incorporating a tool box into an icon command frame in place
of an icon command palette. The declaration of the tool box to be added to the icon
command frame is the same as the aforementioned declaration, but the tool box can
only contain icon commands.

Convert your icon command palettes to tool boxes as demonstrated above. Then
change your icon command frame resource to an extended icon command frame
resource. Before modifying the PALETTE application, you should have the icon
command frame with the resource definition below.

/* Resource definition for sample icon command frame from PALETTE */
DialogBoxRsc DIALOGID_MainSampleFrame=
{

DIALOGATTR_DEFAULT | DIALOGATTR_NORIGHTICONS,
XC, YC, NOHELP, MHELP, HOOKDIALOGID_PaletteHook, NOPARENTID,

TXT_Sample,
{

{{0,0,0,0}, IconCmdFrame, ICONCMDFRAMEID_MainSample,ON,0,“”,“”},
}

};

DItem_IconCmdFrameRsc ICONCMDFRAMEID_MainSample=
{

1, 4, NOHELP, MHELP, TXT_Sample,
{

{IconCmd, ICONCMDID_SampleChooseElement},
/* icon command palette to convert to a tool box */
{IconCmdPalette, ICONCMDPALETTEID_LineSample},
{IconCmdPalette, ICONCMDPALETTEID_ArcSample},
{IconCmd, ICONCMDID_SampleDeleteElement},

}
};

Figure 16.5 Sample icon command
frame from PALETTE application.
16-70 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Adding a tool box
To add a tool box when modifying the icon command frame definition, the dialog box
definition for the icon command frame will be basically the same—except that instead
of including an IconCmdFrame in the dialog box definition, include an extended version
of the IconCmdFrame resource, IconCmdFrameX.

DialogBoxRsc DIALOGID_MainSampleFrame=
{

DIALOGATTR_DEFAULT | DIALOGATTR_NORIGHTICONS, XC, YC,
NOHELP, MHELP, HOOKDIALOGID_PaletteHook, NOPARENTID, TXT_Sample,
{

{{0,0,0,0},IconCmdFrameX,ICONCMDFRAMEID_MainSample,ON,0,“”,“”},
}

};

The changes made to the icon command frame (in bold) allow us to add a tool box to
this frame. Note, there are two additional parameters in the extended resource

• The attribute field, which is reserved for future use and should be
zero.

• The owner task identifier, which is the MDL task identifier of the
application that owns the icon command palette or icon command.
When specifying ownership of the items on a frame, it is best to
specify the task explicitly, rather than using OTASKID.

DItem_IconCmdFrameXRscICONCMDFRAMEID_MainSample=
{

/* DItem_IconCmdFrameXRsc (see dlogbox.h) column rows help help
attributes label identifier source */

1, 4, NOHELP, MHELP, 0, TXT_Sample,
{

/* DialogItemSpecX (see dlogbox.h) item type item identifier owner
owner task identifier */

{IconCmd, ICONCMDID_SampleChooseElement, “PALETTE”},
{ToolBox, TOOLBOXID_LineSample, “PALETTE”},
{IconCmdPalette, ICONCMDPALETTEID_ArcSample, “PALETTE”},
{IconCmd, ICONCMDID_DeleteElement, “”},

}
};

For this example above, we have only converted the first icon command palette that
exists in this icon command frame. We have also changed the last icon command in the
frame from ICONCMDID_SampleDeleteElement to ICONCMDID_DeleteElement to show
that you can reuse one of MicroStation PowerDraft’s icon commands (notice that the
owner task identifier is a NULL string).
MicroStation MDL Programmer’s Reference Guide 16-71

Standard Dialog Box Items
Incorporating tool tips and descriptions
Incorporating tool tips and descriptions

While no changes to icon commands are required to make them part of the tool box,
you can incorporate Tool Tips (balloon help) and Tool Descriptions (flyover help) into
your icon commands. Balloon help is displayed in a yellow text box near a toolbox
item when you place the pointer on top of the item, and the pointer is stationary for
about 0.5 seconds. Flyover help is displayed in MicroStation PowerDraft’s status area
when the balloon help is displayed over an item or when the pointer passes over (flies
over) the icon command.

Notice that we have extended the resource definition for the icon command to include
the extendedAttributes information, rather than create a new resource type to
include this information. The resource compiler and dialog manager have been
enhanced to read and process this extended information for dialog items. By extending
resource definitions, we can maintain backward compatibility with existing dialog
items that you might include in a tool box, rather than creating an IconCmdX resource,
for instance. If you add dialog items to your toolbox without adding the extended
attribute information, then the items will display and operate properly, but you will not
have the balloon and flyover help features enabled.

When creating the text strings for balloon and flyover help, follow these guidelines:

• For balloon help (or tool tip), use the command name if the string is
not too long for the yellow box. We recommend that the string length
should not exceed 30 to 40 characters. Capitalize the first letter of each
word. The maximum string length for balloon help is 80 characters.

• For flyover help (or tool description), use a one-liner that describes
the command. Capitalize the first word in the sentence and do not end
the sentence with a period. The maximum string length for flyover
help is 80 characters.

• Balloon and flyover help are only supported for:

Icon commands that exist in icon command frames or tool boxes

Dialog items that exist in tool boxes

• Use balloon help for a dialog item in a tool box to replace the item’s
label. You should not use a label for a dialog item that is placed in a
tool box.

/* Icon command resource definition, which includes extended
definition for balloon and flyover help */

DItem_IconCmdRsc ICONCMDID_SamplePlaceLine=
{

NOHELP, OHELPTASKIDCMD, 0, CMD_PLACE_LINE, MTASKID, “”, “”,
{
}

16-72 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Tool box summary
}

extendedAttributes
{{

/* extended attribute type Text for balloon and flyover help */
{EXTATTR_FLYTEXT, TXT_Flyover_SamplePlaceLine},
{EXTATTR_BALLOON, TXT_Balloon_SamplePlaceLine},

}};

In the above example, the following definitions are declared in the header file,
palettxt.h.

#define TXT_Balloon_SamplePlaceLine “Place Sample Line”
#define TXT_Flyover_SamplePlaceLine “Place sample line flyover help”

It really is easy to convert existing icon command palettes to tool boxes. And with this
knowledge, you can quickly and easily blend your application into MicroStation
PowerDraft or the next MicroStation upgrade.

Tool box summary

With the introduction of MicroStation PowerDraft, tool boxes effectively replace
palettes. Tool boxes have many advantages over palettes. Tool boxes are:

• Resizable

• Dockable

• Consistent with MicroSoft Office products

Additionally, tool boxes:

• May contain items other than icon command items.

• Support fly-over help.

• Allow commands to be grouped.

Some special rules apply to tool boxes:

• A tool box must be contained in a dialog box resource definition.

Figure 16.6 Place Sample Line
flyover help.
MicroStation MDL Programmer’s Reference Guide 16-73

Standard Dialog Box Items
Converting palettes to tool boxes
• A tool box does not have slam-down fields, (all slam-downs display in
the Tool Settings dialog).

• For a frame to include a tool box, the extended frame resource
(DItem_IconCmdFrameXRsc) must be used.

• Tool boxes which contain items other than icon command resources
cannot be included in a frame.

The format of the tool box resource is as follows, (from dlogbox.h):

typedef struct ditem_toolboxrsc
{

ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;
ULong attributes; /* incl. groupbox, resource, folder */

#if defined (resource)
char label[]; /* Default Label, used for groupBox and

Folder types */
DialogItemRsc itemList[];/* List of items in this container */

#else
long labelLength;
char label[1];

#endif
} DItem_ToolBoxRsc;

Converting palettes to tool boxes

Conversion of palettes to tool boxes is straightforward. The tool box’s resource
definition contains a dialog item resource for each item in the tool box.

➤ To convert each existing palette to a tool box by following these steps

1. Create a tool box definition, using the format in dlogbox.h.

2. For each icon command resource in the existing palette, create a
dialog item resource in the tool box item list.

3. Create a dialog box definition and assign it the same resource id as the
new tool box.

4. List only the tool box item in the new dialog box’s item list.

The icon command resources do not require modification.

Although palettes will continue to be supported, their appearance will only confuse
our customers. Users would be frustrated to not be able to dock and resize palettes.
16-74 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Icon Command Resources
Icon Command Resources
In MicroStation Version 4 and Version 5, it is possible for tool settings not to display
properly. This is especially true when using key-ins, a tablet/paper menu or commands
tagged to function keys.

The problem stemmed from a design inconsistency/flaw in IconCmdRscs. Since the tool
settings item list is associated to the icon, (instead of the command that the icon
executes), the tool settings could only be found if the icon was in memory (displayed).
Users of tablet/paper menus found this problem because they typically keep their
screens free of palettes/tool boxes since all of the commands are right on the menu.

This problem is resolved in MicroStation with the introduction of a new resource type,
CmdItemListRsc. Since it is command based, (command numbers are used as the IDs)
CmdItemListRsc’s let MicroStation find the tool settings for the current command no
matter how the command was called. MicroStation now looks for a CmdItemListRsc
associated with the current command before checking for an item list in an IconCmdRsc
resource.

This enhancement does not change the resource definition of IconCmdRsc’s. However,
is recommended to remove the item list from the IconCmdRsc when you have added a
CmdItemListRsc. CmdItemListRsc’s have been added and tool settings removed from
IconCmdRsc’s for all MicroStation and MicroStation MDL application commands.

Adding CmdItemListRsc’s is an easy task, since it’s item list is of the same form as the
item list in the IconCmdRsc. See the example below which was taken from V551NEW.R
from the delivered MDL example called V551NEW.

The only restriction is that the command and it’s associated CmdItemListRsc must be in
the same application.

#if defined (MSVERSION) && (MSVERSION < 0x551)
/* ----- MicroStation V5 & PowerDraft Method ----- */

DItem_IconCmdRsc ICONCMDID_PlaceSomething=
{

NOHELP, MHELP, 0, CMD_PLACE_SOMETHING, OTASKID, "", "",
{
{{2*XC,GENY(1),0,0},
 ToggleButton,TOGGLEID_LockGrid,ON,0,"",""},
{{2*XC, GENY(2), 0, 0},
 ToggleButton, TOGGLEID_LockGraphicGroup,
ON,0,"",""},

}
};
#else /* ----- MicroStation 95 Method ----- */
/* The above IconCmdRsc gets updated and a CmdItemListRsc resource

is added.*/
MicroStation MDL Programmer’s Reference Guide 16-75

Standard Dialog Box Items
Icon Command Resources
DItem_IconCmdRsc ICONCMDID_PlaceSomething=
{

NOHELP, MHELP, 0, CMD_PLACE_SOMETHING, OTASKID, "", "",
{

/* Tool settings in CmdItemListRsc */
}

}

extendedAttributes
{

{
/* Tool Description/Flyover Help appears in status area */
{EXTATTR_FLYTEXT, TXT_Flyover_PlaceSomething},
/* Tool Tip/Balloon Help appears in yellow text

box near icon command */
{EXTATTR_BALLOON, TXT_Balloon_PlaceSomething},

}
};

CmdItemListRsc CMD_PLACE_SOMETHING=
{

{
{{2*XC,GENY(1),0,0},ToggleButton,
TOGGLEID_LockGrid,ON,0,"",""},
{{2*XC,GENY(2),0,0},ToggleButton,
TOGGLEID_LockGraphicGroup,ON,0,"",""},
}

};
#endif /* if defined (MSVERSION) && (MSVERSION < 0x551) */
16-76 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Icon Command Resources
List Box Item

The list box item allows the display and selection of multiple text strings. A list box has
a vertical scroll bar that is used to scroll through the list of text strings when there are
more strings than can be displayed within the list box item at one time.

List boxes can have multiple columns. Each column can have its own type of
justification. Within a given row, there is one list box cell for every column. A list box
with three columns would have three cells per row. An option exists when defining the
list box to either allow selection of only whole rows or to allow individual cells to be
selected. The handling of the selection of rows within a list box is defined by the
attributes of the list box and the operational mode the list box is using. MicroStation
uses four Motif Selection Modes: Single, Browse, Multiple and Extended which are
described later in this section.

The list box item is designed to manipulate a string list. See “String List Editor” on page
4-24 for more information on creating, manipulating, and destroying string lists. The list
box item assumes that there is one string list member per list box cell. The string list
members should be stored in row order. The first string list member corresponds to the
list cell at row 0, column 0, the second string list member corresponds to the list cell at
row 0, column 1, and so forth.

There must be at least one auxiliary information field associated with each string
member in the string list. This is specified by setting the nInfoFields argument greater
than or equal to one when calling mdlStringList_create. The list box item uses the
first information field of each string list member to store selection and control
information for each cell in the list box. This field must not be modified by the MDL
programmer. If application data needs to be associated with each list box cell, that data
can be placed in additional information fields.

Every list box should have an item hook function attached to it. When the item hook
function receives the DITEM_MESSAGE_CREATE message it should indicate the list box’s
string list by calling mdlDialog_listBoxSetStrListP. The string list must be created
prior to calling this function. The string list must have at least one auxiliary information
field per member and be initialized with one string member for each cell in the list
box. If no item hook function is attached to the list box or the hook function did not
create and attach a string list to the list box, the list box item handler will allocate an
empty string list with two auxiliary information fields and attach it to the list box.

When the item hook function receives the DITEM_MESSAGE_DESTROY it should generally
destroy the string list that the list box is manipulating. The usual reason for not
destroying the string list is when it will be used in further processing, for example,
MicroStation MDL Programmer’s Reference Guide 16-77

Standard Dialog Box Items
Item list specification
plotting all the files that the user just selected. If no item hook function is associated
with the list box or the hook function did not create the string list, the list box item
handler will destroy the string list associated with the list box.

Additional rows can be added to the contents of a list box by inserting members into
the string list that the list box is set to manipulate. This is done with the
mdlStringList_insertMember function. Rows can be deleted from the contents of a
list box by deleting members from the list box’s string list. This is done with the
mdlStringList_deleteMember function. The string that is displayed within an
individual list box cell can be changed by calling the mdlStringList_setMember
function. Be certain, however, not to ever change a string list member’s first auxiliary
information field. To be on the safe side, the infoFieldsP argument to
mdlStringList_setMember can always be set to NULL. Whenever the number of rows
in a list box is changed, the mdlDialog_listBoxNRowsChanged function must be called
or mdlDialog_listBoxSetStrListP can be called again.

The item hook function will receive a DITEM_MESSAGE_STATECHANGED message
whenever the current selection changes.

Item list specification
The DialogItemRsc field extent specifies the location of the list box. The x position
specifies the location of the left side of the list box’s beveled rectangle, not the start of
the list box’s text label. The y position specifies the top of the list box’s beveled
rectangle. The list box resource specification’s column widths and nRows fields
determine a list box’s width and height. Therefore, set the item list’s extent width and
height to 0.

The type field should be ListBox.

The ID determines the DItem_ListBoxRsc instance to load.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field can override the label contained in the DItem_ListBoxRsc instance.

The auxInfo field is not used with list box items.

The following is an example of a list box item list specification:

{{XC, YC, 0, 0}, ListBox, LISTID_FileListFiles, ON, 0, "", ""}
16-78 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item Resource Specification
Item Resource Specification
The list box item is defined in a resource file with the following structure:

typedef struct ditem_listcolumnrsc
{

int width;
int maxSize; /* max # of chars in column */
long attributes;

#if defined (resource)
char heading[];

#else
long headingLength;
char heading[1];

#endif
} DItem_ListColumnRsc;

typedef struct ditem_listrsc
{

ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;
long attributes;
int nRows;
int sizeNumColumn;

#if defined (resource)
char label[];
DItem_ListColumnRsc listColumns[];

#else
long labelLength;
char label[1];

#endif
} DItem_ListRsc;

typedef DItem_ListRsc DItem_ListBoxRsc;

The DItem_ListBoxRsc structure has the following unique fields.

Field Description

attributes Specifies the list box’s attributes. It is constructed by combining the
constants from the attributes table (below) with the logical OR operator.

nRows Specifies the number of rows that will display.
MicroStation MDL Programmer’s Reference Guide 16-79

Standard Dialog Box Items
Item Resource Specification
sizeNumColumn Enables the list box handler to automatically number the rows. The
maximum number of digits that can be used to number the rows must
be specified. For example if a list can have up to 99 rows, specify 2
here. The rows will not be numbered if 0 is specified.

listColumns Represents an array of DItem_ListColumnRsc. This array will have one
entry for each column in the list box. See the next table for a description
of the DItem_ListColumnRsc structure.

attributes Value Meaning

LISTATTR_LABELONSIDE The list box’s label will be placed to the left instead of at
the default.

LISTATTR_NEVERSELECTION The user will be unable to select any part of the list. The
list in this case is used only to view strings.

LISTATTR_DRAGSELECTION The user can select multiple rows by dragging the cursor
or using the SHIFT and/or CTRL modifier keys when
clicking on list box rows. Replaces the
LISTATTR_RANGESELECTION attribute.

LISTATTR_DISJOINTSELECTION When combined with LISTATTR_DRAGSELECTION, this
value indicates that multiple disjoint selections can be
made.

LISTATTR_NOSELECTION The list does not require a selection to always be present.

LISTATTR_INDEPENDENTCOLS Individual cells, instead of entire rows, can be selected.

LISTATTR_NOKEYSEARCH Indicates that a pressed key does not cause a search
thorugh the string list for a match on the first character in
column 1 and position the list box pointer in that row.

LISTATTR_FIXEDFONT Indicates that a fixed width font should be used when
displaying text in the list box.

LISTATTR_DYNAMICSCROLL Indicates that the list box contents should be scrolled as
the user drags the scroll bar handle up and down in the
list box scroll bar.

Field Description
16-80 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item Resource Specification
The following attributes cause the MicroStation list box item handler to emulate various
Motif style selection models for list boxes and should not be used in conjunction with
any of the LISTATTR_xxxxSELECTION attributes documented above:

LISTATTR_COLOREDROWS Indicates that colored rows are to be used in this list box.
If colored rows are to be used, the application must
ensure that at least two auxiliary information fields are
attached to the string list members for use by the list box
item handler and tha t the color descriptor for the color
to be used in the display of the row is stored in the
second auxiliary information field. Specifying NULL in the
second fields indicates that the default color should be
used for display.

LISTATTR_DRAWOVERLAPPING Indicates that any items overlapping the list box are to be
redrawn when the list box is drawn/updated.

attributes Value Meaning

LISTATTR_SELSINGLE Emulate the Motif Single Selection model which allows
the selection of a single row in the list box. Clicking
on the row selects the row and deselects the
previously selected row.

LISTATTR_SELBROWSE Emulate the Motif Browse Selection model which
allows the selection of a single row in the list box.
This model is the same as Single Selection, but
additionally allows the user to browse the list box by
dragging the cursor through the rows in the list box;
highlighting each row as the cursor passes over it.
Releasing the mouse button on a row selects the row
and deselects the previously selected row.

LISTATTR_SELMULTI Emulate the Motif Multiple Selection model which
allows the selection of multiple rows in the list box.
Rows are added to or removed from the selection list
by clicking on them with the mouse.

LISTATTR_SELEXTENDED Emulate the Motif Extended Selection model which
allows the selection of multiple rows in the list box.
This model is the same as Multiple Selection, but
additionally allows the user to select a range of rows
in the list box by dragging the cursor through the rows
in the list box. Use if the SHIFT and/or CTRL modifier
keys extends the selection capabilities of rows in the
list box.

attributes Value Meaning
MicroStation MDL Programmer’s Reference Guide 16-81

Standard Dialog Box Items
Item Resource Specification
The DItem_ListColumnRsc structure has the following unique fields.

The following is an example of a list box item resource. This item is used in the Open
file dialog box, and is defined in MicroStation’s resource file.

DItem_ListBoxRsc LISTID_FileListFiles=
{

NOHELP, MHELP, HOOKITEMID_List_FileListFile, NOARG, 0, 6, 0, "Files",
{
{14*XC, 14, 0, ""},
}

};

Field Description

width Specifies the column width in dialog coordinate units.

maxSize Specifies the maximum number of characters that display in the column.

attributes Specifies the column’s attributes. The values listed in the attributes table
below are valid.

heading Specifies a heading for the column. The heading will be justified above
the column according to the justification bits in attributes.

attributes Value Meaning

ALIGN_LEFT Up to maxSize characters will be left-justified in a column
that is width wide.

ALIGN_RIGHT Up to maxSize characters will be right-justified in a
column that is width wide.

ALIGN_CENTER Up to maxSize characters will be centered in a column
that is width wide.
16-82 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
Item hook function messages
The following messages are sent to item hook functions that are attached to list box
items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_SYNCHRONIZE

DITEM_MESSAGE_BUTTON

DITEM_MESSAGE_KEYSTROKE

DITEM_MESSAGE_STATECHANGED

List box item functions
mdlDialog_listBoxDeleteAll deletes all columns from a list box.

mdlDialog_listBoxDeleteColumn deletes one column from a list box.

mdlDialog_listBoxDrawContents redraws all or part of the list’s visible contents.

mdlDialog_listBoxEnableCells sets the state (enabled or disabled) of a range of cells.

mdlDialog_listBoxSetColInfo sets the attributes of a list box column

mdlDialog_listBoxGetColInfo gets the attributes of a list box column.

mdlDialog_listBoxGetDisplayRange returns the range of cells currently displayed in
the list box.

mdlDialog_listBoxGetInfo gets the attributes of a list box.

mdlDialog_listBoxSetInfo sets the attributes of a list box.

mdlDialog_listBoxGetLocationCursor gets the location of the selection cursor in a
list box.

mdlDialog_listBoxSetLocationCursor sets the location of the selection cursor in a list
box.

mdlDialog_listBoxGetNColumns returns the number of columns in a list box.

mdlDialog_listBoxGetNextSelection obtains the next selected cell after the specified
cell.
MicroStation MDL Programmer’s Reference Guide 16-83

Standard Dialog Box Items
List boxes
mdlDialog_listBoxGetSelectRange returns the range of selected cells. If non-
contiguous selection is enabled, not every cell in the range will be selected.

mdlDialog_listBoxGetSelections returns the location of all currently selected cells.

mdlDialog_listBoxSetSelections extends the list of currently selected cells.

mdlDialog_listBoxGetStrListP returns a pointer to the stringList that is currently
connected to the list box.

mdlDialog_listBoxSetStrListP sets the stringList that the list box will manipulate.
This function must be called when the function receives the DITEM_MESSAGE_CREATE
message. It can also be called any time a list box’s underlying stringList is changed
completely.

mdlDialog_listBoxInsertColumn inserts a column into an existing list box.

mdlDialog_listBoxIsCellSelected returns an indication of whether a given cell is
selected.

mdlDialog_listBoxIsCellEnabled returns an indication of whether a given cell is
enabled.

mdlDialog_listBoxLastCellClicked returns the cell that the last data button click
occurred in.

mdlDialog_listBoxNRowsChanged should be called any time the number of rows in the
stringList attached to the list box changes. Calling this function correctly resizes the
list box’s scroll bar.

mdlDialog_listBoxSelectCells selects (highlights) a range of cells.

mdlDialog_listBoxSetTopRow sets the top row that displays in the list box.

mdlDialog_listBoxSetTopRowRedraw sets which row is the first displayed in a list box
and optionally redraws the list box.

List boxes
If you have seen MicroStation PowerDraft or MicroStation, you may have noticed the
File Open/Create dialog boxes contain folder icons for each directory name, and that
the tool box selection dialog contains a list box containing check box icons. They are
just two examples of an enhancement in the list box item handler that displays icons in
a list box.
16-84 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Modifying list boxes to include icons
Modifying list boxes to include icons

• Modify the resource definition for your list box item. Include a new
attribute, LISTATTR_DRAWPREFIXICON, which instructs the list box item
handler to draw an icon to the left of any text that is included in the
string list for a cell. You may also need to add extra space in the
column for the icon to be drawn.

/* List box resource definition from LISTICON.R */
DItem_ListBoxRsc LISTBOXID_Choices=
{

NOHELP, MHELP, HOOKITEMID_CheckListBox, NOARG,
LISTATTR_DYNAMICSCROLL|LISTATTR_DRAWPREFIXICON|LISTATTR_NOSELECTION,
5, 0, “”,
{

{(WIDTH_FILEOPENDIRS_LISTBOX + 10)*XC, 30, 0, “”},
}

};

• Create the icons that will be displayed in the list box. The icons used
in the MDL example LISTBOX are MicroStation icons whose identifiers
are defined in $(MS)/mdl/include/dlogids.h. You will have to create
icons to support different dialog font sizes.

The dialog font sizes vary from 8 to 24 points. Your application should have an icon to
support each available font size. In the LISTBOX application, we have taken a few
different approaches. The list box containing directory names uses small (16 x 12
pixels), medium (24 x 18 pixels) and large (32 x 24 pixels) icons, depending on the
current dialog font size. The Choices list box uses a different icon for each dialog font
size. For example, for 10 point dialog font, we created a 10 x 10 pixel icon (resource
definition shown below).

/* From USTATION.R */

Figure 16.7 List boxes containing
icons from LISTBOX application.
MicroStation MDL Programmer’s Reference Guide 16-85

Standard Dialog Box Items
Modifying list boxes to include icons
IconRsc ICONID_ToggleOn10Pt=
{

10, 10, FORMAT_MONOBITMAP, BLACK_INDEX, TXT_IconM67_ON,
{

0x00, 0x1f, 0xe6, 0x19, 0x4a, 0x4c, 0x93, 0x25, 0x29,
0x86, 0x7f, 0x80, 0x00,

}
};

• Modify the MDL code that manages the list box’s string list. The
following code is from the list box hook function
listicon_checkListBoxHook for the Choices list box in the LISTBOX
example application. The code for the DITEM_MESSAGE_CREATE
message creates a string list with four information fields and calls the
function listicon_fileListPopulate to populate the string list with
choices and information to display the check box icons.

/* From listicon_checkListBoxHook() in LISTICON.MC */
case DITEM_MESSAGE_CREATE:
{

int fontHeight = mdlDialog_fontGetCurHeight(dimP->db);
int status;
DialogItem *diP = dimP->dialogItemP;
RawItemHdr *rihP = diP->rawItemP;
StringList *strListP;
/* *** *
* Create the string list with at least four info fields. These
* info fields will be used as follows:
* 0 - Reserved for the dialog manager
* 1 - Reserved for colored row information
* (see documentation of LISTATTR_COLOREDROWS)
* (see MDL example NEWITEMS)
* 2 - Resource ID of icon to display preceding that row of text.
* 3 - Number of pixels to indent before drawing the icon.

* ** */
strListP = mdlStringList_create(0, 4);

/* *** *
* if string list create failed, tell the dialog manager
* create failed
* *** */

if (NULL == strListP)
{

dimP->u.create.createFailed = TRUE;
return;

}

/* *** *
* populate the string list with text and icon information based on
16-86 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Modifying list boxes to include icons
* the current font height.
* *** */

if (SUCCESS !=
(status=listicon_checkListPopulate(strListP,fontHeight)))

{
listicon_errorPrint(MSGID_CheckBoxPopulateErr);
dimP->u.create.createFailed = TRUE;
return;

}

/* associate the string list to the list box */
mdlDialog_listBoxSetStrListP(rihP, strListP, 1);
break;

}
...

The function listicon_checkListPopulate is called from the list box hook function
above when the list box is created. The string list for the choices list box is populated
with ten choices with check box icons. The function listicon_toggleCheckBox
assigns the check box icon information to the string list’s information fields.

Private int listicon_checkListPopulate
(
StringList *strListP, /* <= string list to populate */
int fontHeight /* => current dialog font height */
)
{

int status = SUCCESS, i, newIndex;
if (NULL == strListP)

return ERROR;
for (i=0; I<10; i++)
{

char buff[50];
sprintf(buff, “%d Choice”, i);
status=mdlStringList_insertMember(&newIndex,strListP,-1,1);
if (SUCCESS != status)

break;
mdlStringList_setMember(strListP, newIndex, buff, NULL);
/* Add the check box icon information to the string list */
listicon_toggleCheckBox(strListP,newIndex,fontHeight,NULL);

}
return status;

}

The string list associated with the list box must have additional information fields that
store the icon information for the members of the string list. The function
listicon_toggleCheckBox (shown below) initially populates the string list’s
MicroStation MDL Programmer’s Reference Guide 16-87

Standard Dialog Box Items
Modifying list boxes to include icons
information fields and toggles the check box when the user clicks on a row in the list
box. The string list’s information fields are populated according to the following table:

In this function, the current font height determines which icon size to use for the string
list. Field 2 in the information field is set to the appropriate icon’s resource identifier;
field 3 is set to the number of pixels that the icon is indented. For this example, all
check box icons are indented by one pixel.

Private void listicon_toggleCheckBox
(
StringList *strListP, /* <> string list to store icon info */
int listIndex, /* => index into string list */
int fontHeight, /* => current dialog font height */
int *infoFieldsP /* => current information field values */
)
{

int iconRscID, status;
int pixelOffset; /* number of pixels that icon is indented */
/* *** *
* if the icon resource id was previously set, then use it’s value,
* otherwise, set the id to zero
* *** */

iconRscID = (infoFieldsP) ? infoFieldsP[2] : 0;
/* indent the icon by 1 pixel */
pixelOffset = 1;

/* *** *
* if the toggle is OFF then turn it ON. The toggle is initially
* set to OFF.
* *** */

if (fontHeight < 9)
{

iconRscID = (iconRscID==ICONID_ToggleOff8Pt) ?
ICONID_ToggleOn8Pt : ICONID_ToggleOff8Pt;

}
else if (fontHeight < 11)
{

iconRscID = (iconRscID==ICONID_ToggleOff10Pt) ?

Field
number

Use of the information field

0 Reserved for the dialog manager to store selection and control information
for each cell in the list box.

1 Reserved for colored row information.

2 Resource identifier of the icon to display preceding a row of text.

3 Number of pixels to indent before drawing the icon.
16-88 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Modifying list boxes to include icons
ICONID_ToggleOn10Pt : ICONID_ToggleOff10Pt;
}
else if (fontHeight < 13)
{

iconRscID = (iconRscID==ICONID_ToggleOff12Pt) ?
ICONID_ToggleOn12Pt : ICONID_ToggleOff12Pt;

}
else if (fontHeight < 17)
{

iconRscID = (iconRscID==ICONID_ToggleOff14Pt) ?
ICONID_ToggleOn14Pt : ICONID_ToggleOff14Pt;

}
else if (fontHeight < 23)
{

iconRscID = (iconRscID==ICONID_ToggleOff18Pt) ?
ICONID_ToggleOn18Pt : ICONID_ToggleOff18Pt;

}
else
{

iconRscID = (iconRscID==ICONID_ToggleOff24Pt) ?
ICONID_ToggleOn24Pt : ICONID_ToggleOff24Pt;

}

/* *** *
* Set the third info field (index 2) to the resource ID of icon
* to display preceding this row of text.
* *** */

mdlStringList_setInfoField (strListP, listIndex, 2, iconRscID);
/* *** *
* Set the fourth info field (index 3) to the number of pixels to
* indent before drawing the icon.
* *** */

mdlStringList_setInfoField(strListP, listIndex, 3, pixelOffset);
}

• Handle the FONT CHANGED event to modify icon information in the
string list and represent the new font height of the dialog. List box text
sizes change automatically when the current dialog font changes—but
because icon resources are a fixed size, the programmer must update
the icon resource identifier in the StringList according to the new
font height. The application must request font change event messages
from the dialog manager by setting the fontChanges member of
DialogHookInterests to TRUE during the dialog box creation.

/* From listicon_mainBoxHook() in LISTICON.MC */
...
case DIALOG_MESSAGE_CREATE:
{

/* *** *
MicroStation MDL Programmer’s Reference Guide 16-89

Standard Dialog Box Items
Generic Item
* Establish an interest in Dialog font changes so we can change our
* icon sizes when the dialog manager gives us the
* DIALOG_MESSAGE_FONTCHANGED message.
* *** */

dmP->u.create.interests.fontChanges = TRUE;
break;

};
...

When the user moves the dialog box to another screen that has a different font size,
the dialog manager sends the DIALOG_MESSAGE_FONTCHANGED message to the dialog box
hook function. When the hook function receives the message, the application can
either recreate the string list for the list box or modify each icon resource identifier in
each string list member’s information field.

The MDL applications NEWITEMS and LISTBOX mentioned are delivered with
MicroStation under the MDL\examples subdirectory. NEWITEMS was also delivered
with MicroStation V5.0.

Generic Item
The generic item creates items whose appearance and response to mouse and
keyboard messages can be customized. The item hook function manages all behavior
of a generic item. Unlike all other items, the dialog box manager provides no default
behavior for a generic item. The MDL program rasticon shows one use of the generic
item. The source for rasticon is delivered with MicroStation in the mdl\examples
directory.

Item list specification
The item hook function uses the DialogItemRsc field extent to specify the location of
the generic item. If the DITEM_MESSAGE_SETEXTENT message is not handled, the upper
left corner of the item will be at the position specified by extent.origin and the item’s
width and height will be extent.width and extent.height, respectively.
16-90 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
The type field should be Generic.

The ID determines the DItem_GenericRsc instance to load.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field can pass a string to the item hook function at DITEM_MESSAGE_CREATE
time. diMsg.u.create.labelP will point at this field.

The auxInfo field is unused for generic items and should be set to "".

The following is an example of a generic item list specification:

{{XC, YC, 10*YC, 10*YC}, Generic, GENERICID_Cell, ON, 0, "", ""}

Item resource specification
The generic item is defined in a resource file with the following structure:

typedef struct ditem_genericrsc
{

ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;

} DItem_GenericRsc;

The following is an example of a generic item resource. This item is used in the Cells
dialog box, and is defined in MicroStation’s resource file.

DItem_GenericRsc GENERICID_Cell=
{

NOHELP, MHELP, HOOKITEMID_Generic_Cell, NOARG
};

Item hook function messages
The following messages are sent to item hook functions that are attached to generic
items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_INIT
MicroStation MDL Programmer’s Reference Guide 16-91

Standard Dialog Box Items
Generic item functions
DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_DRAW

DITEM_MESSAGE_FONTCHANGED

DITEM_MESSAGE_MOVE

DITEM_MESSAGE_SETEXTENT

DITEM_MESSAGE_BUTTON

DITEM_MESSAGE_SYNCHRONIZE

DITEM_MESSAGE_HIGHLIGHT

DITEM_MESSAGE_KEYSTROKE

DITEM_MESSAGE_FOCUSIN

DITEM_MESSAGE_FOCUSOUT

DITEM_MESSAGE_SETLABEL

DITEM_MESSAGE_GETVALUE

DITEM_MESSAGE_SETVALUE

DITEM_MESSAGE_GETSTATE

DITEM_MESSAGE_SETSTATE

DITEM_MESSAGE_STATECHANGED

DITEM_MESSAGE_QUEUECOMMAND
dimP->dialogItemP->attributes.acceptsKeystrokes should be set to FALSE at
DITEM_MESSAGE_CREATE time if the item should not be able to accept the input focus.
KEYSTROKE, FOCUSIN and FOCUSOUT messages will not be generated.

dimP->dialogItemP->attributes.mouseSensitive should be set to FALSE if the item
should not be able to respond to mouse events. BUTTON messages will not be
generated.

Generic item functions
There are no generic item functions.
16-92 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Button Group Items
Button Group Items
The button group item creates items whose appearance is similar to that of icon
command palettes and icon commmand frames but which can be contained in a
standard dialog box and operate in the same manner as option or radio buttons.

Button group items define a palette of icons which are displayed in a dialog box. The
operation and display of the icons within the palette is defined by the item hook
function and the attributes assigned to the item in the resource definition. To the user,
a button group actually behaves like an iconic option button which is expanded out
and allows radio button selection.

Item list specification
The DialogItemRsc field extent specifies the location of the button group item. The
width and height of the item is defined by the iconWidth and iconHeight fields in the
button group item resource definition The extent.width and extent.height fields are
ignored and should be set 0.

The type field should be ButtonGroup.

The ID determines the DItem_ButtonGroupRsc instance to load.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field can override the label contained in the DItem_ButtonGroupRsc
instance.

The auxInfo field can override the access string contained in the
DItem_ButtonGroupRsc instance.

The following is an example of a button group item list specification:

{{XC, YC, 0, 0}, ButtonGroup, BGROUPID_SnapButtonWide, ON, 0, "", ""}
MicroStation MDL Programmer’s Reference Guide 16-93

Standard Dialog Box Items
Item resource specification
Item resource specification
The button group item is defined in a resource file with the following structure:

typedef struct ditem_buttongroupitemrsc
{

ULong iconType;
long iconId;
ULong commandNumber;
ULong commandSource;
ULong value;
ULong mask;
ULong arrayIndex;
ULong attributes;

#if defined (resource)
char label[];

#else
long labelLength;
char label[1];

#endif

} DItem_ButtonGroupItemRsc;

typedef struct ditem_buttongrouprsc
{

long synonymsId;
ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;
ULong attributes;
long nColumns;
long nRows;
long itemWidth;
long itemHeight;
long selectedFgColorIndex;/* only if lgrey highlight,

-1 = use icon's */

#if defined (resource)
char label[];
char accessStr[];
DItem_ButtonGroupItemRscbuttonGroupItems[];

#else
long labelLength;
char label[1];

#endif

} DItem_ButtonGroupRsc;
16-94 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
The DItem_ButtonGroupRsc structure has the following unique fields. See “Common
Item Resource Fields” on page 16-8 for a description of any field not in this table.

Field Description

attributes Specifies attributes which affect the button group item as a whole. It
is constructed by combining the constants from the following table
with the logical OR operator:

nColumns Specifies the number of columns in the button group.

nRows Specifies the number of rows in the button group.

itemWidth Specifies the width of the icons contained in the button group in
dialog coordinates. A negative value indicates the width is in pixels
and a value of 0 indicates that the maximum icon width for the
icons in the button group should define the item width. This field is
usually 0.

itemHeight Specifies the height of the icons contained in the button group in
dialog coordinate units. A negative value indicates the height is in
pixels and a value of 0 indicates that the maximum icon height for
the icons in the button group should define the item height. This
field is usually 0.

selectedFgColorIndex Specifies a color index to be used as the foreground color in
displaying the icon when it has been selected by the user. If this
value is -1, then the icon’s foreground color is used. This field is not
used when the BGROUPATTR_HIGHLIGHTINVERT attribute is set.

buttonGroupItems Specifies the contents of the button group item. buttonGroupItems
is an array of DItem_ButtonGroupItemRscs that is the button
group’s subitem list. This structure has many of the same fields as
the DItem_OptionButtonItemRsc structure.

Value Description

BGROUPATTR_HIGHLIGHT
-INVERT

Indicates that when an icon is
selected, it should be highlighted
by inverting the icon foreground
and background colors.
MicroStation MDL Programmer’s Reference Guide 16-95

Standard Dialog Box Items
Item resource specification
The DItem_OptionButtonItemRsc structure has the following unique fields. See
“Common Item Resource Fields” on page 16-8 for a description of any field not in this
table.

Field Description

iconType Indicates the type of icon the subitem is using. NOTYPE is not supported
for this field.

iconId Specifies the ID of the icon instance to load and display as the subitem.
NOICON is not supported for this field.

value Is used with mask to determine the currently selected subitem. Only one
subitem can be selected at once. mask indicates the relevant bits of the
variable specified by accessStr. These bits, shifted so the rightmost bit
of the mask becomes bit 0, are compared to value. If the mask is 0x0E
(1110 binary) then the masked value will be shifted right 1 bit before
being compared to value. The subitem whose shifted masked bits
matches value becomes the currently selected subitem.
For example, suppose bits 2 and 3 of the variableflags will be tested.
mask will then be 0xC (1100 binary). If bit 2 is on, the first subitem
should be selected. If bit 3 is on, the second subitem should be selected.
If both bits are on, the third subitem is selected. value and mask
should be set to the following for each subitem:

mask Is used with value to determine the currently selected subitem. If the
entire variable specified by accessStr is being compared to value, set
this field to NOMASK (which is defined to be 0xFFFFFFFF).

enabled Determines the state (enabled or disabled) of the subitem when the
button group is first created. If this field is set to ON, the subitem can be
selected; when it is set to OFF, the subitem will be dim and cannot be
selected.

arrayIndex Not currently supported.

attributes Specifies subitem specific attribute characteristics. It is constructed by
combining the constants from the following table with the logical OR
operator:

subitem value mask flags value that will select subitem

0 1 0xC 4 (= 1 << 2)

1 2 0xC 8 (= 2 << 2)

2 3 0xC 12 (= 3 << 2)
16-96 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
The following is an example of a button group item resource. This item is used in the
Snap Mode button bar, and is defined in MicroStation’s resource file.

DItem_ButtonGroupRsc BGROUPID_SnapButtonTwoRow=
{

SYNONYMID_SnapButtonGroup, NOHELP, MHELP,
HOOKITEMID_ButtonGroup_SnapMode, NOARG,
0, 8, 2, 0, 0, WHITE_INDEX, "", "tcb->snapOverride",
{

{Icon, ICONID_NearSnapPoint, NOCMD, MCMD, 0, NOMASK, 0, 0, ""},
{Icon, ICONID_KeyPointSnap, NOCMD, MCMD, 1, NOMASK, 0, 0, ""},
{Icon, ICONID_MidPointSnap, NOCMD, MCMD, 2, NOMASK, 0, 0, ""},
{Icon, ICONID_CenterSnapCircle, NOCMD, MCMD, 3, NOMASK, 0, 0, ""},
{Icon, ICONID_OriginSnap, NOCMD, MCMD, 4, NOMASK, 0, 0, ""},
{Icon, ICONID_BisectorSnap, NOCMD, MCMD, 5, NOMASK, 0, 0, ""},
{Icon, ICONID_IntersectSnap, NOCMD, MCMD, 6, NOMASK, 0, 0, ""},
{Icon, ICONID_TangentSnap, NOCMD, MCMD, 7, NOMASK, 0, 0, ""},
{Icon, ICONID_TangentPointSnap, NOCMD, MCMD, 8, NOMASK, 0, 0, ""},
{Icon, ICONID_PerpendicularSnap, NOCMD, MCMD, 9, NOMASK, 0, 0, ""},
{Icon, ICONID_PerpendicularSnapPnt,NOCMD, MCMD, 10,NOMASK,0,0, ""},
{Icon, ICONID_ParallelSnap, NOCMD, MCMD, 11,NOMASK, 0, 0, ""},
{Icon, ICONID_ThruPointSnap, NOCMD, MCMD, 12,NOMASK, 0, 0, ""},
{Icon, ICONID_PointOnSnap, NOCMD, MCMD, 13,NOMASK, 0, 0, ""},
{Icon, ICONID_ResizeBoxToTall, NOCMD, MCMD, 14,NOMASK, 0, 0, ""},

}
};

Item hook function messages
The following messages are sent to item hook functions that are attached to button
group items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_INIT

attributes Value Meaning

BGROUPITEMATTR_DISABLED Specifies that the icon is disabled and is not selectable
by the user.

BGROUPITEMATTR_GREYED Specifies that when the icon is drawn, it should be
drawn using the icon style ICON_STYLE_DGREY (See the
mdlWindow_iconDraw function in the MicroStation MDL
Function Reference Manual for more information on
icon drawing styles).
MicroStation MDL Programmer’s Reference Guide 16-97

Standard Dialog Box Items
Sash Item
DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_GETSTATE

DITEM_MESSAGE_SETSTATE

DITEM_MESSAGE_SYNCHRONIZE

DITEM_MESSAGE_STATECHANGED

DITEM_MESSAGE_QUEUECOMMAND

Sash Item
The sash item creates items whose appearance is a separator bar with a handle on it
which can be used to divide a dialog box into separate horizontal panes. The user can
grab the sash handle and drag the sash up and down the dialog box changing the
amount of display space in each pane. The item hook function controls how far the
sash can move and the resizing/redisplaying of items in each pane.

The hook function is responsible for performing the resizing of items on each side of
the sash; the sash item handler does not do any item resizing itself. The item hook can,
and should, perform the resizing using both a motion function hook and button up
event processing logic.

Item list specification
The DialogItemRsc field extent specifies the horizontal location of the sash. The y
position should be defined and the x, width and height fields are ignored and should
be 0.

The type field should be Sash.

The ID determines the DItem_SashRsc instance to load.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.
16-98 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
The itemArg field is unused and should usually be set to 0.

The label field is unused for sash items and should be set to "".

The auxInfo field is unused for sash items and should be set to "".

The following is an example of a sash item list specification:

{{0, 0, 10*YC, 0}, Sash, SASHID_Example, ON, 0, "", ""}

Item resource specification
The sash item is defined in a resource file with the following structure:

typedef struct ditem_sashrsc
{

ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;
long topBorder; /* min dist. from top (in dcoords) */
long bottomBorder; /* min dist. from bottom (in dcoords) */
ULong attributes;

} DItem_SashRsc;

The DItem_SashRsc structure has the following unique fields. See “Common Item
Resource Fields” on page 16-8 for a description of any field not in this table.

The following is an example of a sash item resource.

DItem_SashRsc SASHID_Example=
{

NOHELP, MHELP, HOOKID_Sash, NOARG, 5*YC, 5*YC, 0
};

Field Description

topBorder Specifies the minimum distance from the top of the dialog box that the
sash can be moved.

bottomBorder Specifies the minimum distance from the bottom of the dialog box that
the sash can be moved.
MicroStation MDL Programmer’s Reference Guide 16-99

Standard Dialog Box Items
Item hook function messages
Item hook function messages
The following messages are sent to item hook functions that are attached to sash items:

DITEM_MESSAGE_BUTTON

When handling the DITEM_MESSAGE_BUTTON message for a BUTTONTRANS_DOWN event,
the item hook function can use a motion function (the u.button.motionFunc member)
to allow the application to track cursor movement while the button is down. Using a
motion function would allow the MDL application to dynamically resize the panes as
they are “resized” by the sash item.

Sash item functions
There are no sash item functions.

Scale Item
The scale item can be used to show the state of a variable that ranges between a set of
values. These items are similar to scroll bars except that they also allow the attachment
of moving labels and implement the Motif scale item within MicroStation.

Item list specification
The DialogItemRsc field extent specifies the location of the scale. The x position
specifies the left edge and the y position specifies the top edge of the scale. The
orientation of the scale depends on the width and height fields. If width is 0, the scale
handler will make a vertical scale. If height is 0, a horizontal scale will be created. Both
the width and height cannot be 0.

The type field should be Scale.

The ID determines the DItem_ScaleRsc instance to load.

The attributes field can be ON or OFF and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field can override the label contained in the DItem_ScaleRsc instance.
16-100 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
The auxInfo field can currently override only the access string contained in the
DItem_ScaleRsc instance.

The following is an example of a scale item list specification:

{{XC, YC, 10*XC, 0}, Scale, SCALEID_ColorPal_AltColorSpace3, ON,
0, "", ""}

Item resource specification
The scroll bar item is defined in a resource file with the following structure:

typedef struct ditem_scalersc
{

ULong commandNumber;
ULong commandSource;
long synonymsId;
ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;
double minValue;
double maxValue;
double incAmount;
double pageIncAmount;
long associatedTextId;
ULong attributes;
char formatToDisplay[16];

#if defined (resource)
char label[];
char accessStr[];
char minLabel[];
char maxLabel[];

#else
long labelLength;
char label[1];

#endif

} DItem_ScaleRsc;
MicroStation MDL Programmer’s Reference Guide 16-101

Standard Dialog Box Items
Item resource specification
The DItem_ScaleRsc structure has the following unique fields. See “Common Item
Resource Fields” on page 16-8 for a description of any field not in this table.

The following table lists possible values for the attributes field (described above) and
the meaning of those values:

Field Description

minValue Specifies the value associated with the minimum position of the scale
slider.

maxValue Specifies the value associated with the maximum position of the scale
slider.

incAmount Specifies the amount the current value of the scale is changed when the
user clicks on the scale arrows.

pageIncAmount Specifies the amount the current value of the scale is changed when the
user clicks in the page area of the scale. The page areas are the areas
between the slider and the scale arrows.

associatedTextId This field specifies the resource ID of a text item that will be associated
with the scale item. As the user drags the mouse on the slider, the
associated text item will be dynamically set to the value of the scale
based upon it’s current slider position.

attributes Specifies the attributes of the scale item. It is constructed by combining
the constants from the attributes table (below) with the logical OR
operator.

formatToDisplay An sprintf format string to convert the value of the scale item into a
display value when the SCALE_SHOWVALUE attribute is used.

minLabel A string which should be used as the label for the minimum value of the
scale item.

maxLabel A string which should be used as the label for the maximum value of
the scale item.

attributes Value Meaning

SCALE_HASARROWS Indicates that the scale item should be drawn with single
step adjustment arrows at each end of the scale.

SCALE_SHOWVALUE Indicates that the current scale value should be displayed
alongside the slider.

SCALE_LIMITSONSIDE Indicates that the range limits for the scale are to be
displayed at the side of the scale item and not at the ends.
By default, scale ranges are displayed at the ends of the
scale item. Limits are most commonly placed on the side
when the scale is vertically oriented.
16-102 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
The following is an example of a scale item resource. This item is used in the Color
Palette dialog box, and is defined in MicroStation’s resource file.

DItem_ScaleRsc SCALEID_ColorPal_AltColorSpace3=
{

NOCMD, LCMD, SYNONYMID_ColorPar_AltColorSpace3, NOHELP, MHELP,
HOOKITEMID_Scroll_ColorSquare, NOARG,
0.0, 100.0, 1.0, 5.0, TEXTID_ColorPal_AltColorSpace3,
SCALE_HASARROWS, "%.0lf", "", "", "", ""

};

Item hook function messages
The following messages are sent to item hook functions attached to scale items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_INIT

DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_BUTTON

DITEM_MESSAGE_GETSTATE

DITEM_MESSAGE_SETSTATE

DITEM_MESSAGE_SETVALUE

DITEM_MESSAGE_STATECHANGED

DITEM_MESSAGE_SYNCHRONIZE

DITEM_MESSAGE_FOCUSIN

DITEM_MESSAGE_FOCUSOUT

DITEM_MESSAGE_KEYSTROKE

DITEM_MESSAGE_POSTKEYSTROKE

DITEM_MESSAGE_SYNCHRONIZE

DITEM_MESSAGE_QUEUECOMMAND
RTYPE_Scale, Auxilliary message type SCALE_AUXMESSAGE_FORMATVALUE

The RTYPE_Scale message is used to allow the item hook function to display textual
information as the current item value instead of the current scale item value. This
message is only sent when the SCALE_SHOWVALUE attribute is set on the scale item. The
message is sent to the hook function each time the item handler needs to display the
current value of the scale item alongside the scale slider. The dimP->auxMessageType
field will be set to SCALE_AUXMESSAGE_FORMATVALUE and the dimP->auxInfoP field will
point to a buffer into which the hook function can place an ASCII string to be
MicroStation MDL Programmer’s Reference Guide 16-103

Standard Dialog Box Items
Scale item functions
displayed as the current scale item value. The newitems MDL example application
shows various usages of the scale item.

When handling the DITEM_MESSAGE_BUTTON message for a BUTTONTRANS_DOWN event,
the item hook function can use a motion function (the u.button.motionfunc member)
to allow the application to track cursor movement while the button is down.

Scale item functions
There are no scale item functions.

Popup Menu Item
The popup menu item creates a floating pulldown menu under the mouse cursor when
opened. The item can be opened the item hook function during button event
processing. This item is simply a reference to an existing pulldown menu resource
which can be used as a popup menu by the application program.

An application program causes a popup menu to be displayed by using a dialog box
hook function that handles the DIALOG_MESSAGE_BUTTON event for a dialog box
containing a popup menu item in its item list. The hook function can cause a popup
menu to be opened by setting the dmP->u.button.buttonRiP field to point to the raw
item header of the popup menu item. This causes the popup menu to be displayed
under the mouse cursor and the user to select a entry in that popup menu. Typically,
the popup menu is opened on a BUTTONTRANS_DOWN event with some form of modifier
key (SHIFT, CTRL or ALT key combined with the mouse down event).

Item list specification
The DialogItemRsc field extent to is ignored by the item handler and should be set to
0 in all subfields.

The type field should be PopupMenu.

The ID determines the DItem_PopupMenuRsc instance to load.
16-104 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
The attributes field should always be HIDDEN.

The itemArg field is unused and should usually be set to 0.

The label field is unused for popup menu items and should be set to "".

The auxInfo field is unused for popup menu items and should be set to "".

The following is an example of a popup menu item list specification:

{{0, 0, 0, 0}, PopupMenu, POPUPMENUID_ViewSnaps, HIDDEN, 0, "", ""}

Item resource specification
The popup menut item is defined in a resource file with the following structure:

typedef struct ditem_popupmenursc
{

ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;
ULong attributes;
ULong menuType;
long menuId;

} DItem_PopupMenuRsc;

The DItem_PopupMenuRsc structure has the following unique fields. See “Common Item
Resource Fields” on page 16-8.

The following is an example of a popup menu item resource. This item is used in
MicroStation’s window environment, and is defined in MicroStation’s resource file.

DItem_PopupMenuRsc POPUPMENUID_ViewSnaps=
{

NOHELP, LHELP, NOHOOK, NOARG, 0, PulldownMenu, PULLDOWNMENUID_Snaps
};

Field Description

menuType Specifies the type of pulldown menu resource to be used as a popup
menu. This value must be one of PulldownMenu, RPulldownOptionMenu
or PulldownCPickerMenu.

menuId Specifies the resource id of the pulldown menu resource to be used as a
popup menu.
MicroStation MDL Programmer’s Reference Guide 16-105

Standard Dialog Box Items
Item hook function messages
Item hook function messages
The following messages are sent to item hook functions that are attached to popup
menu items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_INIT

DITEM_MESSAGE_DESTROY

Popup menu item functions
There are no popup menu item functions.

Radio Button Item
The radio button item shows the state of an application variable that can be any one of
a selection of values. The currently selected value is identified by the 3D diamond
displayed next to each value label. This item is actually comprised of two different
resources: The radio button resource itself which describes one of the possible values
an option can assume and the radio button list resource which defines all the radio
button values which comprise the group. The collection of these two resources is
called a radio button group and is operationally similar to the option button item and
visually similar to the toggle button item.

When the user selects one of the options available for a radio button group, that option
is highlighted and the previously highlighted option is un-highlighted. That is, radio
buttons operate the same as an option button in that only one option can be selected
at any one time, but are visually similar to toggle buttons in that they are all displayed
to the user at all times are are displayed as toggle fields.

Item list specification
The DialogItemRsc field extent specifies the location of the radio button item. The x
position specifies the location of the left side of the radio button’s 3D diamond, not the
start of the radio button’s text label. The y position specifies both the top of the 3D
diamond and the top of the text label. If the width is 0, the width of the label is used.
If the height is 0, the height of the current dialog font is used.
16-106 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item resource specification
The type field should contain RadioButton.

The ID determines the DItem_RadioButtonRsc instance to load.

The attributes field can be ON or OFF, and optionally combined with HIDDEN. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field overrides the label contained in the DItem_RadioButtonRsc instance.

The auxInfo field currently overrides only the access string contained in the
DItem_RadioButtonRsc instance.

The following is an example of a radio button item list specification:

{{XC, YC, 0, 0}, RadioButton, RBUTTONID_Option4, ON, 0, "", ""}

Item resource specification
The list of radio button item instances is defined in a resource file along with the actual
radio button item resources themselves. The list of radio button resources which
comprise the radio button group is defined by the following structure:

typedef struct idlistrsc
{

#if defined (resource)
long ids[];

#else
long nIds;
long idList[1];

#endif

} IdListRsc;

typedef IdListRsc DItem_RadioButtonListRsc;

This structure defines the list of DItem_RadioButtonRsc resource IDs which comprise
the content of the radio button group. The DItem_RadioButtonRsc structure describes
a component of a radio button group and is defined by the following structure:

typedef struct ditem_radiobuttonrsc
{

ULong commandNumber;
ULong commandSource;
long synonymsId;
ULong helpInfo;
ULong helpSource;
MicroStation MDL Programmer’s Reference Guide 16-107

Standard Dialog Box Items
Item resource specification
long itemHookId;
long itemHookArg;
ULong value;
ULong mask;
long radioButtonListId; /* must specify, id of list

of other rb's in group */

#if defined (resource)
char label[];
char accessStr[];

#else
long labelLength;
char label[1];

#endif

} DItem_RadioButtonRsc;

The DItem_RadioButtonRsc structure has the following unique fields. See ““Common
Item Resource Fields” on page 16-8.

For example, suppose bits 2 and 3 of the variableflags will be tested. mask will then
be 0xC (1100 binary). If bit 2 is on, the first subitem should be selected. If bit 3 is on,
the second subitem should be selected. If both bits are on, the third subitem is
selected. value and mask should be set to the following for each subitem:

Field Description

value Is used with mask to determine the currently selected subitem. Only
one subitem can be selected at once. mask indicates the relevant bits
of the variable specified by accessStr. These bits, shifted so the
rightmost bit of the mask becomes bit 0, are compared to value. If the
mask is 0x0E (1110 binary) then the masked value will be shifted right
1 bit before being compared to value. The subitem whose shifted
masked bits matches value becomes the currently selected subitem.

mask Is used with value to determine the currently selected subitem. If the
entire variable specified by accessStr is being compared to value, set
this field to NOMASK (which is defined to be 0xFFFFFFFF).

radioButtonListId Defines the resource ID of the DItem_RadioButtonListRsc which to
which this radio button resource definition belongs. This defines the
grouping to be used for this radio button value definition.

subitem value mask flags value that will select subitem

0 1 0xC 4 (= 1 << 2)

1 2 0xC 8 (= 2 << 2)

2 3 0xC 12 (= 3 << 2)
16-108 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item hook function messages
The following is an example of a radio button item resource. This item is used in the
Color Palette dialog box, and is defined in MicroStation’s resource file.

DItem_RadioButtonListRsc RADIOBUTTONLISTID_ColorInterp_Terminal=
{

{
RADIOBUTTONID_ColorInterp_Start,
RADIOBUTTONID_ColorInterp_End,

}
};

DItem_RadioButtonRsc RADIOBUTTONID_ColorInterp_Start=
{

NOCMD, LCMD, NOSYNONYM, NOHELP, MHELP,
HOOKITEMID_ColorInterp_RadioButtons, NOARG,
0, 0xff, RADIOBUTTONLISTID_ColorInterp_Terminal,
TXT1_ColorInterpRadioButtonStart, "msDialogState.interpColor"

};

DItem_RadioButtonRsc RADIOBUTTONID_ColorInterp_End=
{

NOCMD, LCMD, NOSYNONYM, NOHELP, MHELP,
HOOKITEMID_ColorInterp_RadioButtons, NOARG, 1, 0xff,
RADIOBUTTONLISTID_ColorInterp_Terminal,
TXT1_ColorInterpRadioButtonEnd, "msDialogState.interpColor"

};

Item hook function messages
The following messages are sent to item hook functions that are attached to radio
button items:

DITEM_MESSAGE_CREATE

DITEM_MESSAGE_INIT

DITEM_MESSAGE_DESTROY

DITEM_MESSAGE_BUTTON

DITEM_MESSAGE_SYNCHRONIZE

DITEM_MESSAGE_GETSTATE

DITEM_MESSAGE_SETSTATE

DITEM_MESSAGE_STATECHANGED

Radio button item functions
There are no radio button item functions.
MicroStation MDL Programmer’s Reference Guide 16-109

Standard Dialog Box Items
Tab Page Item
Tab Page Item

This document describes the use and construction of Tab Page dialog
items. Included is a complete description of the MDL resources
provided, the use of tab pages, and several programming examples.
With this information, the knowledgeable user should be able to
create customized interfaces to expand the capabilities of MicroStation
products. The tab page item and tab page list item have been
implemented in MicroStation SE.

The tab page item is used to create dividers much like those in a notebook or the
labels in a file cabinet. By using a tab page item, several pages for an application can
be defined and displayed multiple in the same area of a dialog box. Each page consists
of a set of information or a group of items that the application displays when the user
selects the corresponding tab. This item is comprised of two different resources:

• The tab page list resource which lists the individual tab page items to
be displayed.

• The tab page resource itself which lists the items to be displayed on
the page and identifies the label on the tab.

Tab Page List
The tab page list item DialogItemRsc entry is included in the dialog box item list.

Item List Specification
The DialogItemRsc field extent specifies the location and size of the tab page list
item. Depending on the placement of the tabs (top, bottom, left, right), the x position
specifies the location of the left side of the tab page area or the left side of the tabs.
Similarly, depending on the tab placement, the y position specifies either the top of the
tabs to be included in the list or the top of the tab page display area. The size of the
tab page area depends on the width and height fields. If width is 0, the width of the
tab page area is based on the positioning and sizes of the different items on each of the

Tab Page dialog items
displaying Tab Options.
16-110 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item Resource Specification
tab pages. If height is 0, the height of the tab page area is based on the sizes of the
items on the pages.

• The type field should contain TabPageList.

• The ID determines the DItem_TabPageListRsc instance to load.

• The attributes field can be ON or OFF, and optionally combined with
hidden. It will usually be ON.

• The itemArg field is unused and should usually be set to 0.

• The label field is unused and should be set to “”.

• The auxInfo field is unused and should be set to “”.

The following is an example of an item list specification for the tab page list item.

{{B1X,GENY(1),TPLW,0}, TabPageList, TPLISTID_ONE, ON, 0,"",""},

Item Resource Specification
The tab page list resource is defined in a resource file along with the actual tab page
resources themselves. Tab page list resources are defined by the following structure:

typedef struct ditem_tabpagelistrsc
{
long width; /* dialog coords */
long height; /* dialog coords */
long synonymsId;
ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;
ULong attributes;

#if defined (resource)
char label[];
DialogItemRsc itemList[];

#else
long labelLength;
char label[1];

#endif
} DItem_TabPageListRsc;

#if defind (resource)
resourceclass DItem_TabPageListRsc RTYPE_TabPageList;

#define TabPageList RTYPE_TabPageList
#endif
MicroStation MDL Programmer’s Reference Guide 16-111

Standard Dialog Box Items
Item Resource Specification
The DItem_TabPageListRsc structure defines the list of DItem_TabPageRsc resource
Ids which comprise the tab page list. This structure has the following unique fields.
(See “Common item resource fields” for a description of any field not in this table.)

Field Description

width Specifies the overall width of the tab page display area, including
the area for the tabs.

height Specifies the overall height of the tab page display area, including
the area for the tabs.

label Unused and should be set to “”.

itemList An array of DialogItemRsc and lists the tab pages contained in this
tab page list.

attributes Specifies the attributes of the tab page list item. It is constructed by
combining the constants from the attributes table (below) with the
logical OR operator.

Value Description

TABATTR_DEFAULT Tab Attributes default includes: Tabs across the top, Single
row of tabs (if tabs are too wide for display area, up-down
buttons are generated for tab navigation), Tabs variable
sized, centered labels & centered icons Tabs are medium
height

TABATTR_TABSBOTTOM Tabs across the bottom

TABATTR_TABSLEFT Tabs along the left

TABATTR_TABSRIGHT Tabs along the right

TABATTR_MULTIROW Show multiple rows of tabs if too wide for a single row

TABATTR_TABSFITPAGEWIDTH Tabs sized to fit the page area

TABATTR_TABSFIXEDWIDTH Width of tabs based on largest label

TABATTR_LABELLEFTJUSTIFY Left justify the tab label

TABATTR_LABELRIGHTJUSTIFY Right justify the tab label

TABATTR_ICONLEFTJUSTIFY Left justify the tab icon

TABATTR_ICONRIGHTJUSTIFY Right justify the tab icon

TABATTR_TABSSHORT Short tabs

TABATTR_TABSTALL Tall tabs
16-112 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item Hook Function Messages
The following is an example of a tab page list item resource.

DItem_TabPageListRsc TPLISTID_ONE =

{
0, 0, NOSYNONYM, NOHELP, MHELP, NOHOOK, NOARG, TABATTR_DEFAULT,
TXT_DialogTabs,
{
{{0,0,0,0}, TabPage, TABPAGEID_OPTIONS, ON, 0,"",""},
{{0,0,0,0}, TabPage, TABPAGEID_RADIOS, ON, 0,"",""},
{{0,0,0,0}, TabPage, TABPAGEID_SCALES, ON, 0,"",""},
}

};

Item Hook Function Messages
The following messages are sent to item hook functions that are attached to tab page
list items: DITEM_MESSAGE_CREATE, DITEM_MESSAGE_DESTROY,
DITEM_MESSAGE_SYNCHRONIZE, DITEM_MESSAGE_BUTTON, DITEM_MESSAGE_KEYSTROKE,
DITEM_MESSAGE_STATECHANGED, DITEM_MESSAGE_GETSTATE and
DITEM_MESSAGE_SETSTATE.

Tab Page
The individual tab page item DialogItemRsc entries are listed in the item list of the tab
page list resource. The items to be displayed on a page are listed in the appropriate tab
page resource definition.

Item List Specification
The DialogItemRsc field extent is unused for tab page items. The tab page list
containing this tab page will place and size the tab according to the tab page list
attributes.

The type field should contain TabPage.

The ID determines the DItem_TabPageRsc instance to load.

The attributes field can be ON or OFF, and optionally combined with hidden. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field is unused and should be set to “”.
MicroStation MDL Programmer’s Reference Guide 16-113

Standard Dialog Box Items
Item Resource Specification
The auxInfo field is unused and should be set to “”.

The following is an example of a tab page item list specification.

{{0,0,0,0}, TabPage, TABPAGEID_OPTIONS, ON, 0,"",""},

Item Resource Specification
The tab page resources are defined by the following structure:

typedef struct ditem_tabpagersc
{
ULong commandNumber;
ULong commandSource;
long synonymsId;
ULong helpInfo;
ULong helpSource;
long itemHookId;
long itemHookArg;
ULong attributes;
ULong iconType;
long iconId;

#if defined (resource)
char label[]; /* Default Label */
DialogItemRsc itemList[]; /* List of items in this container */

#else
long labelLength;
char label[1];

#endif
} DItem_TabPageRsc;

#if defined (resource)
resourceclass DItem_TabPageRsc RTYPE_TabPage;

#define TabPage RTYPE_TabPage
#endif

The DItem_TabPageRsc structure defines the list of items which comprise the display
area of the tab page. This structure has the following unique fields. (See “Common
item resource fields” for a description of any field not in this table.)

Field Description

iconType Indicates the type of icon the tab is using. This field should usually
be Icon if you are using IconRscs. If not using icons, specify
NOTYPE.
16-114 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item Hook Function Messages
The following is an example of a tab page item resource.

DItem_TabPageRsc TABPAGEID_OPTIONS=
{

NOCMD, LCMD, NOSYNONYM, NOHELP, MHELP, NOHOOK, NOARG,
TABATTR_DEFAULT, Icon, ICONID_TabOptions,
TXT_TabPageOptions,
{
{{XRBL,Y11,0,0}, RadioButtonListX, RBLISTXID_TABPLACEMENT,
ON, 0, "", ""},
{{XGRP,Y11-YC,GBW,7*YC}, GroupBox, 0, ON, 0, TXT_TabPlacement, ""},
{{X1,Y16,0,0}, ToggleButton, TOGGLEBTNID_AddTabPage, ON, 0, "", ""},
}

};

✍ The first item in a tab page item list must have a type and Id combination
that is unique within the dialog box. Because most group box’s are
defined with an id of 0, we recommend you not start a tab page item list
with a group box. In the example above, we use the RadioButtonListX as
the unique item, as this item occurs only once in the dialog box.

Item Hook Function Messages
The following messages are sent to item hook functions that are attached to tab page
items: DITEM_MESSAGE_CREATE, DITEM_MESSAGE_DESTROY, DITEM_MESSAGE_SYNCHRONIZE,
DITEM_MESSAGE_BUTTON, DITEM_MESSAGE_KEYSTROKE, DITEM_MESSAGE_STATECHANGED,
DITEM_MESSAGE_GETSTATE and DITEM_MESSAGE_SETSTATE.

iconId Specifies the ID of the icon instance to load and display on the tab.
May be used in conjunction with the tab’s label. If you are not using
icons, specify NOICON. The tab page list attributes for icons
determine the placement of the icon on the tab.

label Specifies the tab’s label. May be used in conjunction with the tab’s
icon. The tab page list attributes for labels determine the placement
of the label on the tab.

itemList An array of DialogItemRsc that lists the items contained in the
display area of this tab page.

Field Description
MicroStation MDL Programmer’s Reference Guide 16-115

Standard Dialog Box Items
Combo Box Item
Combo Box Item
The combo box item consists of a popup list and a selection field. The popup list
presents the options a user can select and the selection field displays the current
selection. The selection field may optionally be an edit field used to enter text not in
the list. Any new values are then added to the list of available options.

Item List Specification
The DialogItemRsc field extent specifies the location and size of the combo box item
selection field. The x position specifies the location of the left side of the selection
field, and the y position specifies either the top of the selection field or, if the ‘label on
top’ attribute is set, the top of the label. If width is 0, the width of the ComboBox
selection field is calculated using the maximum number of characters the field
cancontain. Specifying an explicit width is recommended. If height is 0, the height is
calculated using the current dialog font.

The type field should contain ComboBox.

The ID determines the DItem_ComboBoxRsc instance to load.

The attributes field can be ON or OFF, and optionally combined with hidden. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field can override the label contained in the DItem_ComboBoxRsc instance.

The auxInfo field can currently override only the access string contained in the
DItem_ComboBoxRsc instance.

The following is an example of an item list specification for the ComboBox item:

{{X_POS, Y_POS, CMBX_W, 0}, ComboBox, COMBOBOXID_STATES, ON,
0,"",""},

Item Resource Specification
The ComboBox resource is defined in a resource file with the following structure:

typedef struct ditem_comboboxrsc
{
ULong commandNumber;
ULong commandSource;
long synonymsId;
ULong helpInfo;
16-116 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item Resource Specification
ULong helpSource;
long itemHookId;
long itemHookArg;
byte maxSize; /* max # of chars in text field */
char formatToDisplay[16];/* format str to convert from internal */
char formatToInternal[16];/* convert to internal from display str */
char minimum[16]; /* minimum value */
char maximum[16]; /* maximum value */
ULong mask; /* only used with integer types */
long stringListId; /* Id of initial string list used */
long nRows; /* Number of rows to show in list */
UShort gapWidth; /* Gap between textedit & button */
UShort listWidth; /* Width of dropdown listbox */
UShort valueColumnIndex; /* Index of Column to get value from */
ULong attributes; /* other attributes */

#if defined (resource)
char label[];
char accessStr[];
DItem_ListColumnRsc listColumns[];

#else
long labelLength;
char label[1];

#endif
} DItem_ComboBoxRsc;

#if defined (resource)
resourceclass DItem_ComboBoxRscRTYPE_ComboBox extendedAttributes;

#define ComboBox RTYPE_ComboBox
#endif

For consistency with MicroStation’s dialog boxes, a combo box item’s label should end
with a colon.

The following fields are described in the Text Item resource specification and are
functionally identical in the combo box:

maxSize, formatToDisplay, formatToInternal, minimum, maximum and mask.

The following fields are described in the List Box Item resource specification and are
functionally identical in the combo box:

nRows and listColumns.
MicroStation MDL Programmer’s Reference Guide 16-117

Standard Dialog Box Items
Item Resource Specification
The DItem_ComboBoxRsc structure has the following unique fields. (See “Common item
resource fields” for a description of any field not in this table.)

Valid constants for use with the attributes field:

The following are two examples of a ComboBox item resource.

DItem_ComboBoxRsc COMBOBOXID_STATES=
{
NOCMD, LCMD, NOSYNONYM, NOHELP, MHELP, HOOKID_ComboStates,
NOARG, 2, "", "", "", "", NOMASK, STRLISTID_ComboBoxStates, 15, 0,
TW*4, 0, COMBOATTR_READONLY | COMBOATTR_INDEXISVALUE, "States:", "",
{ {TW, 2, 0, "Code"}, {0, 15, 0, "State Name"}, }
};

DItem_ComboBoxRsc COMBOBOXID_EDITTABLE=
{
NOCMD, LCMD, NOSYNONYM, NOHELP, MHELP, HOOKID_ComboBoxes, NOARG,

Field Description

stringListId Resource Id of a String List to be used to fill the popup list.

gapWidth The gap between the selection field and the popup list activation
button (specified in dialog coordinates (dcoords)).

listWidth The width of popup List Box (specified in dialog coordinates
(dcoords)).

valueColumnIndex Specifies the index of the list column to obtain the selection field
value from.

attributes Specifies the attributes of the combo box item. It is constructed by
combining the constants from the attributes table (below) with the
logical OR operator.

Constant Description

COMBOATTR_READONLY The selection field is read only; no editting is allowed

COMBOATTR_SORT Sort members in string list initially and as new values
are added

COMBOATTR_DRAWPREFIXICON Draw a specified icon preceding the text in the popup
List Box

COMBOATTR_INDEXISVALUE Use the list box member index as the value; not the
actual value of the list box member

COMBOATTR_AUTOADDNEWSTRINGS Automatically add new values to the string list after
they are entered in the selection field

COMBOATTR_LABELABOVE Place the label above the selection field
16-118 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item Hook Function Messages
12, "%.1lf", "%lf", "0.0", "100.0", NOMASK, 0, 6, 4, 0, 0,
COMBOATTR_AUTOADDNEWSTRINGS, "ComboBox 2:", "", { {0, 12, 0, ""}, }

};

Item Hook Function Messages
The following messages are sent to item hook functions that are attached to
ComboBox items: DITEM_MESSAGE_CREATE, DITEM_MESSAGE_DESTROY,
DITEM_MESSAGE_SYNCHRONIZE, DITEM_MESSAGE_BUTTON, DITEM_MESSAGE_KEYSTROKE,
DITEM_MESSAGE_STATECHANGED, DITEM_MESSAGE_GETSTATE and
DITEM_MESSAGE_SETSTATE.

ComboBox Item Functions
mdlDialog_comboBoxGetInfo - gets the attributes of a combo box.

mdlDialog_comboBoxSetInfo - sets the attributes of a combo box.

mdlDialog_comboBoxGetTextP - returns the RawItemHdr pointer of the attached text
item.

mdlDialog_comboBoxGetListBoxP - returns the RawItemHdr pointer of the attached
popup list box.

mdlDialog_comboBoxGetStrListP - returns a pointer to the string list that is currently
connected to the combo box.

mdlDialog_comboBoxSetStrListP - sets the string list that the combo box will
manipulate.

mdlDialog_comboBoxSetPopupState - may be used to programmatically open or close
the popup list box.

SpinBox Item
The SpinBox item consists of a text field and up-down arrows. The arrows may be
used to increment or decrement the numeric value in the text field.

Item List Specification
The DialogItemRsc field extent specifies the location and size of the SpinBox item.
The x position specifies the location of the left side of the text field, and the y position
specifies either the top of the text field or, if the 'label on top' attribute is set, the top of
MicroStation MDL Programmer’s Reference Guide 16-119

Standard Dialog Box Items
Item Resource Specification
the label. If width is 0, the width of the SpinBox is calculated using the maximum
number of characters the text field can contain. Specifying an explicit width is
recommended. If height is 0, the height is calculated using the current dialog font.

The type field should contain SpinBox.

The ID determines the DItem_SpinBoxRsc instance to load.

The attributes field can be ON or OFF, and optionally combined with hidden. It will
usually be ON.

The itemArg field is unused and should usually be set to 0.

The label field can override the label contained in the DItem_SpinBoxRsc instance.

The auxInfo field can currently override only the access string contained in the
DItem_SpinBoxRsc instance.

The following is an example of an item list specification for the SpinBox item:

{{X_POS, Y_POS, SPNBX_W, 0}, SpinBox, SPINBOXID_EXAMPLE, ON,
0,"",""},

Item Resource Specification
The SpinBox resource is defined in a resource file with the following structure:

typedef struct ditem_spinboxrsc
 {
 ULong commandNumber;
 ULong commandSource;
 long synonymsId;
 ULong helpInfo;
 ULong helpSource;
 long itemHookId;
 long itemHookArg;
 byte maxSize; /* max # of chars in field */
 charformatToDisplay[16];/* format str to convert from internal */
 charformatToInternal[16];/* convert to internal from display str */
 double minValue; /* minimum value */
 double maxValue; /* maximum value */
 double incAmount; /* UpDown increment amount */
 ULong mask; /* only used with integer types */
 ULong attributes; /* other attributes */
#if defined (resource)
 char label[];
16-120 MicroStation MDL Programmer’s Reference Guide

Standard Dialog Box Items
Item Hook Function Messages
 char accessStr[];
#else
 long labelLength;
 char label[1];
#endif
 } DItem_SpinBoxRsc;

#if defined (resource)
resourceclass DItem_SpinBoxRsc RTYPE_SpinBox extendedAttributes;

#define SpinBox RTYPE_SpinBox
#endif

For consistency with MicroStation's dialog boxes, a SpinBox item's label should end
with a colon.

The following fields are described in the Text Item resource specification and are
functionally identical in the SpinBox: maxSize, formatToDisplay, formatToInternal,
minValue, maxValue and mask.

The DItem_SpinBoxRsc structure has the following unique fields. (See "Common item
resource fields" for a description of any field not in this table.)

Valid constants for use with the attributes field:

The following is an example of a SpinBox item resource.

DItem_SpinBoxRsc SPINBOXID_Example=
 {
 NOCMD, LCMD, NOSYNONYM, NOHELP, MHELP, HOOKID_spinBox, NOARG,
 8, "%.1lf in", "%lf", 1.0, 100.0, 0.5, NOMASK, SPINATTR_LABELABOVE,
 "~Spin Box Label:", "appG.spinBoxValue"
 };

Item Hook Function Messages
The following messages are sent to item hook functions that are attached to SpinBox
items: DITEM_MESSAGE_CREATE, DITEM_MESSAGE_DESTROY, DITEM_MESSAGE_SYNCHRONIZE,
DITEM_MESSAGE_BUTTON, DITEM_MESSAGE_KEYSTROKE, DITEM_MESSAGE_STATECHANGED,
DITEM_MESSAGE_GETSTATE and DITEM_MESSAGE_SETSTATE.

Field Description

attributes Specifies the attributes of the SpinBox item.

Constant Description

SPINATTR_LABELABOVE Place the label above the text field.
MicroStation MDL Programmer’s Reference Guide 16-121

16-122 MicroStation MDL Programmer’s Reference Guide

17 Dialog Box Manager Hook Functions
Hook functions give an MDL dialog box programmer the ability to
modify or amplify the default behavior of the standard dialog items.
For generic items, the item hook function actually implements the
entire behavior of the item, thereby allowing complete creation of
custom items.
Hook Functions
There are two types of hook functions: dialog hook functions and item hook
functions. A dialog hook function is attached to a dialog box and receives messages
that apply to the dialog box as a whole. An item hook function is attached to an item
within a dialog box and receives messages that apply only to that item.

Dialog hook functions are passed a single argument, a pointer to a DialogMessage.
Item hook functions are also passed a single argument, but this argument points to a
DialogItemMessage.

Both hook function types are of type void. The hook functions respond to messages
by setting the msgUnderstood, and other message fields that depend on the message
type. Fields used to reply to the dialog box manager will be zero (FALSE) when sent to
a hook function. The hook function sets a response field only if it needs to answer a
non-zero (TRUE) result.

See “Dialog Box Manager Basic Concepts” on page 15-6 for more information on hook
functions and messages.

See “Debugging Hook Functions” on page 19-3 for information on how to have the
dialog box manager print detailed information about the messages it sends to dialog
and item hook functions. This is the best technique for learning about the type,
contents and order of the messages that can be sent to hook functions.
MicroStation MDL Programmer’s Reference Guide 17-1

Dialog Box Manager Hook Functions
DialogMessage structure
Dialog Hook Functions
A basic dialog hook function should look like the following:

Public void dialogName_dialogHook
(
DialogMessage *dmP
)
{

dmP->msgUnderstood = TRUE;
switch(dmP->messageType)
{

case DIALOG_MESSAGE_CREATE:
{

dmP->u.create.interests.updates = TRUE;
dmP->u.create.interests.mouses = TRUE;
...
break;

}
case DIALOG_MESSAGE_DESTROY:
{

...
break;

}
default:
{

dmP->msgUnderstood = FALSE;
break;

}
}

}

Dialog hook functions are set up as one switch statement that tests for various
messages and then handles them.

DialogMessage structure
The dialogmessage structure that is the only argument to a dialog hook function is
declared as follows (from dlogitem.h):
17-2 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DialogMessage structure
typedef struct dialogmessage
{

boolean msgUnderstood; /* <= message understood? */
int messageType; /* => message type */
DialogBox *db; /* => dialog box handle */
long dialogId; /* => resource id of dialog box */
void *userDataP; /* => set by user during CREATE */
union
{

/* structures that contain information
that depend on messageType */

} u;
} DialogMessage;

The structures in the union u will be discussed in the section on the individual dialog
messages.

✍ An “opaque” pointer is a pointer that an MDL program can receive from
and pass to functions, but should never attempt to reference.

Field Description

msgUnderstood Indicates whether the dialog hook function understood the message.
The dialog hook function sets this field to TRUE if it understands the
message. If the message is not understood, the dialog box manager
takes specific action depending on the value of messageType. Some
messages also have a hookHandled member. This member indicates that
the hook function not only understood the message, but handled it
completely and the dialog box manager should not perform any further
default processing.

messageType Specifies the type of dialog message. The individual messages are
discussed in the next section.

db Contains an opaque pointer to the dialog box intended for the message.
This pointer is usually just passed on to other dialog box manager
functions.

dialogId Contains the ID of the dialog box the message is intended for.

userDataP Contains a pointer that can be set up in response to the
DIALOG_MESSAGE_CREATE message. This pointer will then be passed to
the dialog hook function for all other messages.
MicroStation MDL Programmer’s Reference Guide 17-3

Dialog Box Manager Hook Functions
DialogMessage structure
Dialog Hook Function Messages
The messageType field of a dialog message determines the message’s type. Based on
the field’s value, additional information can be present in the u field of the
DialogMessage structure. This section discusses each individual dialog message,
including any additional information.

The following messages are listed in this section:

Focus Messages (page 17-10) Sent

DIALOG_MESSAGE_CREATE Before any DITEM_MESSAGE_CREATE messages
are sent to the item hook functions.

DIALOG_MESSAGE_INIT After DITEM_MESSAGE_CREATE messages are
sent to all the item hook functions.

DIALOG_MESSAGE_BEFOREDESTROY Before the dialog items have been sent the
DITEM_MESSAGE_DESTROY message and the
dialog box has been sent the
DIALOG_MESSAGE_HIDE message.

DIALOG_MESSAGE_HIDE When the dialog box is about to be hidden.

DIALOG_MESSAGE_DESTROY When the dialog box is about to be
destroyed.

Focus Messages (page 17-10) Sent

DIALOG_MESSAGE_FOCUSIN When the dialog box gains the input focus.

DIALOG_MESSAGE_FOCUSOUT When the dialog box loses the input focus.

DIALOG_MESSAGE_ITEMFOCUSIN When an item in the dialog box gains the
input focus.

DIALOG_MESSAGE_ITEMFOCUSOUT When an item in the dialog box loses the
input focus.

DIALOG_MESSAGE_KEYSTROKE When a key is pressed while the dialog box
has the input focus.

DIALOG_MESSAGE_ACTIVATE When a specific menu bar menu item or
dialog item is activated.
17-4 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DialogMessage structure
Size Messages (page 17-16) Sent

DIALOG_MESSAGE_RESIZE After the dialog box is resized.

DIALOG_MESSAGE_CALCSIZE When the dialog box manager needs to know
what the dialog box’s size would be if the
dialog font height were changed to a specific
value.

DIALOG_MESSAGE_FONTCHANGED When the dialog box is moved between
screens using differing font sizes.

DIALOG_MESSAGE_MINIMIZE To the dialog hook function when the user
presses the minimize button in the dialog title
bar or the mdlWindow_minimize function is
called.

DIALOG_MESSAGE_MAXIMIZE To the dialog hook function when the user
presses the maximize button in the dialog title
bar or the mdlWindow_maximize function is
called.

Button Messages (page 17-20) Sent

DIALOG_MESSAGE_PREBUTTON When a mouse button event occurs.

DIALOG_MESSAGE_BUTTON Somewhere in the dialog box.

DIALOG_MESSAGE_ACTIONBUTTON When the user presses and releases an OK,
Cancel, Apply, Reset or Default button.

Open & Close Messages (page 17-24) Sent

DIALOG_MESSAGE_CHILDDESTROYED To a dialog box’s parent when the dialog is
destroyed.

DIALOG_MESSAGE_ANOTHEROPENED To all dialogs that set the otherDialogs field
of DialogHookInterests to equal TRUE when
any dialog is opened.

DIALOG_MESSAGE_ANOTHERCLOSED To all dialogs that set the otherDialogs field
of DialogHookInterests to TRUE when any
dialog is destroyed.
MicroStation MDL Programmer’s Reference Guide 17-5

Dialog Box Manager Hook Functions
Non-requested Messages
Non-requested Messages
The following messages, documented in this section, do not have to be requested; they
are always sent:

DIALOG_MESSAGE_CREATE

DIALOG_MESSAGE_INIT

DIALOG_MESSAGE_BEFOREDESTROY

DIALOG_MESSAGE_HIDE

DIALOG_MESSAGE_DESTROY

DIALOG_MESSAGE_CREATE message

The DIALOG_MESSAGE_CREATE message is sent before any DITEM_MESSAGE_CREATE
messages are sent to the item hook functions. Additional information is included in the
create member of the DialogMessage union u as follows:

typedef struct dialoghookinterests /* set member TRUE if
notification wanted */

{
ULong updates:1; /* after an item receives a draw msg */
ULong mouses:1; /* on button msgs */
ULong keystrokes:1; /* on keystroke events */
ULong dialogFocuses:1; /* when dialog gets/loses focus */
ULong itemFocuses:1; /* when item get/loses focus */
ULong synchs:1; /* when item is synchronized */
ULong resizes:1; /* when dialog resized or moved */
ULong calcSizes:1; /* when dialog is moved to 2nd screen &

dialog mgr. needs to know the size */
ULong fontChanges:1; /* when dialog is moved to 2nd screen &

the font size will be affected */
ULong nonDataPoints:1; /* send RESET & TENTATIVE msgs */
ULong otherDialogs:1; /* another dialog open and close msgs */

Miscellaneous Messages (page 17-26) Sent

DIALOG_MESSAGE_UPDATE After the dialog box manager has drawn the
contents of a dialog box.

DIALOG_MESSAGE_SYNCH When the dialog box is synched by the
mdlDialog_itemsSynch function.

DIALOG_MESSAGE_STATECHANGED To the dialog hook function after the dialog
item state has changed.

DIALOG_MESSAGE_USER To a dialog hook function with the
mdlDialog_hookDialogSendUserMsg function.
17-6 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_CREATE message
ULong stateChangeds:1; /* after item state changes */
ULong minimizes:1; /* when dialog is minimized */
ULong maximizes:1; /* when dialog is maximized */
ULong activates:1; /* after item is activated */
ULong preButtons:1; /* before normal BUTTON message */
ULong unused:16;

} DialogHookInterests; /* CREATE, INIT, HIDE, BEFOREDESTROY and
DESTROY ALWAYS SENT */

struct
{

boolean createFailed; /* <= set to TRUE if error */
DialogHookInterests interests;/* <= */
void **userDataPP; /* <= */
DialogBoxRsc *dialogBoxRP; /* => */

} create;

Dialog hook functions will usually want to perform any memory allocations for the
entire dialog box in their DIALOG_MESSAGE_CREATE message handling,. They will then
store a pointer to the allocated data in the variable pointed at by userDataPP.
Remember that at this point, no items have been created so it is illegal (and
meaningless) to perform any actions on them.

Field Description

createFailed Indicates whether the dialog hook function’s handling of the create
message failed. If so, the function sets this field to TRUE. The dialog box
will then remain unopened and an alert will display instead.

interests Contains bitfields that the dialog hook function should set to TRUE to
indicate which dialog messages are needed. For example, if update
messages should be sent to the dialog hook function, the updates
bitfield must be set to TRUE.

DIALOG_MESSAGE_CREATE, DIALOG_MESSAGE_INIT, DIALOG_MESSAGE_HIDE,
DIALOG_MESSAGE_BEFOREDESTROY, DIALOG_MESSAGE_DESTROY and
DIALOG_MESSAGE_USER messages will always be sent to dialog hook
functions. If any other messages are required, the appropriates bits must
be set in the interests field when the function receives the
DIALOG_MESSAGE_CREATE message.

userDataPP Stores a pointer to a user-defined (and allocated) data area. This pointer
will be passed back to the dialog hook function in all subsequent
messages in the userDataP field. This pointer points to another
pointer. To set the pointer, enter a command similar to the following:

*dmP->u.create.userDataPP = &myData;

dialogBoxRP Points to the dialog box’s loaded resource.
MicroStation MDL Programmer’s Reference Guide 17-7

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_INIT message
 DIALOG_MESSAGE_INIT message

The DIALOG_MESSAGE_INIT message is sent after DITEM_MESSAGE_CREATE messages are
sent to all the item hook functions. Additional information is included in the init
member of the DialogMessage union u as follows:

struct
{
boolean initFailed; * <= set to TRUE if error occurred */} init;

Sometimes dialog box-wide initializations cannot be performed until all individual
items in the dialog box are created. For this reason, both DIALOG_MESSAGE_CREATE and
DIALOG_MESSAGE_INIT messages exist. When the DIALOG_MESSAGE_INIT message is
received by a dialog hook function, it serves as a signal that all of the dialog box’s
items have been created and can be modified.

DIALOG_MESSAGE_BEFOREDESTROY message

The DIALOG_MESSAGE_BEFOREDESTROY message is sent before the dialog items have
been sent the DITEM_MESSAGE_DESTROY message and the dialog box has been sent the
DIALOG_MESSAGE_HIDE message. This message allows the dialog box hook function to
perform additional cleanup prior to the dialog items being destroyed and/or to stop the
dialog box from being destroyed. Any dialog item related memory not freed by dialog
item hooks should be freed now. Additional information is included in the destroy
member of the DialogMessage union u as follows:

struct
{

boolean stopDestroy; /* <= TRUE means stop destroy */
boolean userRequested; /* => TRUE means user initiated destroy

FALSE means program initiated destroy */
} beforeDestroy;

Field Description

initFailed Indicates whether the dialog hook function’s handling of the init
message failed. If so, the function sets this field to TRUE. The dialog box
will then remain unopened and an alert will display instead.

Field Description

stopDestroy If set to TRUE by the dialog hook function, the destroy processing by
MicroStation will be stopped and the dialog box will not be destroyed
or hidden.

userRequested If TRUE, this field indicates that the destroy was initiated by the user
rather than by an application program.
17-8 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_HIDE message
DIALOG_MESSAGE_HIDE message

The DIALOG_MESSAGE_HIDE message is sent when the dialog box is about to be hidden.
Additional information is included in the hide member of the DialogMessage union u
as follows:

struct
{

int reason; /* => reason for dialog being hidden */
} hide;

DIALOG_MESSAGE_DESTROY message

The DIALOG_MESSAGE_DESTROY message is sent when the dialog box is about to be
destroyed. All item hook functions have received DITEM_MESSAGE_DESTROY messages.
Any generic dialog related memory that was allocated in response to the
DIALOG_MESSAGE_CREATE or DIALOG_MESSAGE_INIT message should be freed now.

Field Description

reason Contains a code indicating the reason the dialog is being hidden.
Possible values are shown below.

.

reason Value Meaning

HIDE_HideWindow The window has been hidden by an
application.

HIDE_ExitingMicr
oStation

The window is being hidden due to
MicroStation being terminated. A
DESTROY message will follow the HIDE
message in this case.

HIDE_WindowClose The window is being hidden prior to
being closed. A DESTROY message will
follow the HIDE message in this case.

HIDE_NoDgnFile The window is being hidden because
there is no open design file.

HIDE_UserClose The window is being hidden as a result
of the user closing the window. A
DESTROY message will follow the HIDE
message in this case.

HIDE_MdlUnload The window is being closed as a result of
the owning MDL application being
unloaded from memory. A DESTROY
message will follow the HIDE message in
this case.
MicroStation MDL Programmer’s Reference Guide 17-9

Dialog Box Manager Hook Functions
Focus Messages
Additional information is included in the destroy member of the DialogMessage union
u as follows:

struct
{

int actionType; /* => */
} destroy;

Focus Messages
The following messages can be sent when the focus changes:

DIALOG_MESSAGE_FOCUSIN

DIALOG_MESSAGE_FOCUSOUT

DIALOG_MESSAGE_ITEMFOCUSIN

DIALOG_MESSAGE_ITEMFOCUSOUT

DIALOG_MESSAGE_KEYSTROKE

DIALOG_MESSAGE_ACTIVATE
The first four of these messages all use the focusOutType field, which can have the
following values:

Field Description

actionType Contains the value last set by a call to the
mdlDialog_lastActionTypeSet function. If the standard push button
hook function is attached to a push button, this field contains the push
button’s itemHookArg field (usually an ACTIONBUTTON_ constant).

focusOutType Value Meaning

FOCUSOUT_KEYSWITCH Focus has changed as a result of a keyboard action.

FOCUSOUT_BUTTONSWITCH Focus has changed as a result of a button action.

FOCUSOUT_SETITEM Focus has changes as a result of a dialog item
programmatically being assigned focus.

FOCUSOUT_HIDEITEM Focus has changed as a result of the previous item being
hidden.

FOCUSOUT_DISABLEITEM Focus has changed as a result of the previous item being
disabled.

FOCUSOUT_SWITCHDIALOG Focus has changed as a result of a new dialog box
receiving focus.

FOCUSOUT_APPLYDIALOG Focus has changed as a result of an apply operation being
performed on the dialog box containing the item.
17-10 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_FOCUSIN message
DIALOG_MESSAGE_FOCUSIN message

The DIALOG_MESSAGE_FOCUSIN message is sent when the dialog box gains the input
focus. If the item that will gain the input focus has an item hook function, a
DITEM_MESSAGE_FOCUSIN message was already sent. Additional information is included
in the focusIn member of the DialogMessage union u as follows:

struct
{

int itemIndex; /* => item about to get focus */
int focusOutType; /* => prev item focus out reason */
RawItemHdr *riP; /* => item about to get focus */

} focusIn;

DIALOG_MESSAGE_FOCUSOUT message

The DIALOG_MESSAGE_FOCUSOUT message is sent when the dialog box loses the input
focus. If the item with the input focus has an item hook function, a
DITEM_MESSAGE_FOCUSOUT message was already sent. Additional information is
included in the focusOut member of the DialogMessage union u as follows:

struct
{
boolean outOfRange; /* <= if current value out of range */
int itemIndex; /* => child item that lost focus */
int focusOutType; /* => reason for focus out */
int moveDirection; /* => 1: forward, -1: backward */
boolean hookHandled; /* <= TRUE if handled by hook */
int nextFocusItemIndex; /* <=> next item to get focus */
RawItemHdr *nextFocusRiP; /* <=> next item to get focus */
RawItemHdr *riP; /* => item that just lost focus */
} focusOut;

Field Description

itemIndex Specifies the item index (0-based) of the item that just gained the input
focus.

focusOutType Specifies the reason the focus changed from the previous item to the
one about to get focus. Possible values for this field are listed at the top
of this section and are defined in msdefs.h.

riP Specifies a pointer to the Raw Item Header of the item to receive focus.
MicroStation MDL Programmer’s Reference Guide 17-11

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_ITEMFOCUSIN message
DIALOG_MESSAGE_ITEMFOCUSIN message

The DIALOG_MESSAGE_ITEMFOCUSIN message is sent when an item in the dialog box
gains the input focus. If the item that will gain the input focus has an item hook
function, a DITEM_MESSAGE_FOCUSIN message was already sent. Additional information
is included in the focusIn member of the DialogMessage union u as follows:

struct
{

int itemIndex; /* => item about to get focus */
int focusOutType; /* => prev item focus out reason */
RawItemHdr *riP; /* => item about to get focus */

} focusIn;

Field Description

outOfRange Indicates whether the current input focus item contains a value that is
out of range. The dialog hook function sets this field to TRUE for an
out-of-range value., in which case the dialog will not lose the input
focus unless it is forced to. (Some methods of changing the input
focus allow out-of-range focus-out errors to be ignored).

itemIndex Specifies the item index (0-based) of the item that just lost the input
focus.

focusOutType Specifies the reason the focus changed from the previous item to the
one about to get focus. Possible values for this field are listed at the
top of this section and are defined in msdefs.h.

moveDirection This field is not used for this message.

hookHandled This field is not used for this message.

nextFocusItemIndex This field is not used for this message.

nextFocusRiP This field is not used for this message.

riP Specifies a pointer to the Raw Item Header of the item losing focus.

Field Description

itemIndex Specifies the item index (0-based) of the item that just gained the
input focus.

focusOutType Specifies the reason the focus changed from the previous item to
the one about to get focus. Possible values for this field are listed at
the top of this section and are defined in msdefs.h.

riP Specifies a pointer to the Raw Item Header of the item to receive
focus.
17-12 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_ITEMFOCUSOUT message
DIALOG_MESSAGE_ITEMFOCUSOUT message

The DIALOG_MESSAGE_ITEMFOCUSOUT message is sent when an item in the dialog box
loses the input focus. If the item with the input focus has an item hook function, a
DITEM_MESSAGE_FOCUSOUT message was already sent. Additional information is
included in the focusOut member of the DialogMessage union u as follows:

struct
{

boolean outOfRange; /* <= if current value out of range */
int itemIndex; /* => item just lost focus */
int focusOutType; /* => reason for focus out */
int moveDirection; /* => 1: forward, -1: backward */
boolean hookHandled; /* <= TRUE if handled by hook */
int nextFocusItemIndex; /* <=> next item to get focus */
RawItemHdr *nextFocusRiP;/* <=> next item to get focus */
RawItemHdr *riP; /* => item that just lost focus */

} focusOut;

Field Description

outOfRange Indicates whether the current input focus item contains a value that
is out of range. The dialog hook function sets this field to TRUE for
an out-of-range value., in which case the dialog item will not lose
the input focus unless it is forced to. (Some methods of changing
the input focus allow out-of-range focus-out errors to be ignored).

itemIndex Specifies the item index (0-based) of the item that just lost the input
focus.

focusOutType Specifies the reason the focus changed from the previous item to
the one about to get focus. Possible values for this field are listed at
the top of this section and are defined in msdefs.h.

moveDirection Specifies the direction from the current item position in which the
focus is shifting. A value of 1 means forward and -1 means
backward.

hookHandled Indicates whether the dialog box manager should continue default
handling for the focus out event. The dialog hook function should
set this field to TRUE to stop the default handling. In this case, the
dialog box manager will validate the nextFocusItemIndex and
nextFocusRiP fields to ensure that they point at a valid item, and
will set the next input focus item to the proper value if so.

nextFocusItemIndex Specifies the item index (0-based) of the next dialog item to receive
input focus. This field is input-only for this message.

nextFocusRiP Specifies the pointer to the Raw Item Header of the next item to
receive input focus.

riP Specifies a pointer to the Raw Item Header of the item losing focus.
MicroStation MDL Programmer’s Reference Guide 17-13

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_KEYSTROKE message
DIALOG_MESSAGE_KEYSTROKE message

The DIALOG_MESSAGE_KEYSTROKE message is sent when a key is pressed while the
dialog box has the input focus. This message is sent to the dialog hook function before
a DITEM_MESSAGE_KEYSTROKE message is sent to the relevant item hook function to
allow the dialog hook function to modify the key. Additional information is included in
the keystroke member of the DialogMessage union u as follows:

struct
{

boolean hookHandled; /* <= only for hooks,TRUE = handled */
int moveDirection; /* <= -1 or 1 indicate next field */
int keystroke; /* <=> key that was pressed*/
int qualifierMask; /* => shift/ctrl/alt status */
int itemIndex; /* => item key WOULD be send to */
Inputq_element *iqelP; /* => source queue element */
boolean isAccelerator; /* <=> TRUE = accelerator keystroke */
ULong commandNumber; /* <=> Command num for accelerator */
char *unparsedP; /* <=> Parm string for cmd function */
char *commandTaskIdP; /* <=> Task containing cmd function */
RawItemHdr *riP; /* => Item that would get keystroke */

} keystroke;

Field Description

hookHandled Indicates whether the dialog box manager should continue default
handling for the keystroke. The dialog hook function should set
this field to TRUE to stop the default handling. In this case, a
DITEM_MESSAGE_KEYSTROKE message will not be sent to the item
hook function of the item that currently has the input focus.

moveDirection Indicates that the key pressed caused the input focus to be moved
if hookHandled is TRUE. 1 means that the input focus should be
moved forward (later in the dialog item list) to an item that can
accept the focus. -1 means that the input focus should be moved
backward (earlier in the dialog item list) to an item that can accept
the focus.

keystroke Contains the keystroke that was just pressed. If the dialog hook
function changes this field, the new keystroke value will be the
value sent to any relevant item hook function.

qualifierMask Contains the state of the qualifier keys at the time of the keystroke
event. The possible qualifier keys are SHIFTKEY, CTRLKEY and
ALTKEY. These bitmasks are defined in keys.h.

itemIndex Specifies the item that currently has the input focus.

iqelP Contains a pointer to the raw input queue element for the
keystroke event. See msinputq.h for the declaration of the
InputQ_element structure.
17-14 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_ACTIVATE message
DIALOG_MESSAGE_ACTIVATE message

The DIALOG_MESSAGE_ACTIVATE message is sent to the dialog hook function when one
of the following occurs:

1. The user uses a keyboard accelerator key to activate a specific menu
bar menu item.

2. The user uses a keyboard mnemonic to activate a specific dialog item.

3. An application calls mdlDialog_pushButtonActivate to activate a
push button item.

If the dialog item being activated has a hook function, the DITEM_MESSAGE_ACTIVATE
message has already been sent to the dialog item.

Additional information is included in the activate member of the DialogMessage union
u as follows:

struct
{

ULong couldSetState; /* <= if not modal, could set state */
RawItemHdr *activatedRiP; /* => item to be activated */
int itemIndex; /* => index of item to be activated */
int keystroke; /* => virtual keystroke */
int rawKeystroke; /* => raw keystroke */
int qualifierMask; /* => modified key status */
boolean isAccelerator; /* => key is accelerator */

isAccelerator A value of TRUE for this field indicates that the current keystroke is
being interpreted as a command accelerator. If this field is TRUE,
then the three fields describing the command information contain
valid data. The hook function may change the value of this field to
perform special case handling of keystroke accelerators.

commandNumber Contains the command number which will be queued to
MicroStation after all keystroke processing is completed. This field
is only valid of isAccelerator is TRUE.

unparsedP Contains a pointer to the unparsed character string which will be
passed to the command function when the command is executed.
This field is only valid of isAccelerator is TRUE.

commandTaskIdP Contains a pointer to the task ID of the application which
implements the command indicated by the commandNumber field.
This field is only valid of isAccelerator is TRUE.

riP Contains a pointer to the Raw Item Header of the dialog item
which would/will receive the keystroke.

Field Description
MicroStation MDL Programmer’s Reference Guide 17-15

Dialog Box Manager Hook Functions
Size Messages
ULong commandNumber; /* => accelerator key command */
char *unparsedP; /* => accelerator key cmd parms */
char *commandTaskIdP; /*=> accelerator key cmd task id */

} activate;

Size Messages
The following messages, documented in this section, are sent either before or after a
dialog or the items in it need to be or are resized.

DIALOG_MESSAGE_RESIZE

DIALOG_MESSAGE_CALCSIZE

DIALOG_MESSAGE_FONTCHANGED

DIALOG_MESSAGE_MINIMIZE

DIALOG_MESSAGE_MAXIMIZE

Field Description

couldSetState This field is unused in this message.

itemIndex Specifies the item index (0-based) of the item that just lost the input
focus.

activatedRiP Contains a pointer to the Raw Item Header of the dialog item which
is being activated.

keystroke Contains the platform independent (virtual) keystroke that was just
pressed.

rawKeystroke Contains the raw, native keystroke just pressed.

qualifierMask Contains the state of the qualifier keys at the time of the keystroke
event. The possible qualifier keys are SHIFTKEY, CTRLKEY, and
ALTKEY. These bitmasks are defined in keys.h.

isAccelerator A value of TRUE for this field indicates that the current keystroke is
being interpreted as a command accelerator. If this field is TRUE,
then the three fields describing the command information contain
valid data.

commandNumber Contains the command number which will be queued to
MicroStation after all keystroke processing is completed. This field
is only valid of isAccelerator is TRUE.

unparsedP Contains a pointer to the unparsed character string which will be
passed to the command function when the command is executed.
This field is only valid of isAccelerator is TRUE.

commandTaskIdP Contains a pointer to the task ID of the application which
implements the command indicated by the commandNumber field.
This field is only valid of isAccelerator is TRUE.
17-16 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_RESIZE message
DIALOG_MESSAGE_RESIZE message

The DIALOG_MESSAGE_RESIZE message is sent after the dialog box is resized. Additional
information is included in the resize member of the DialogMessage union u as
follows:

struct
{

long whichCorners; /* => which corners moved */
Rectangle oldFrame; /* => old frame rectangle */
Rectangle oldContent; /* => old content rectangle */
Rectangle newContent; /* => new content rectangle */
boolean forceCompleteRedraw; /* <= force dialog redraw */

} resize;

DIALOG_MESSAGE_CALCSIZE message

The DIALOG_MESSAGE_CALCSIZE message is sent when the dialog box manager needs to
know what the dialog box’s size would be if the dialog font height were changed to a
specific value. Additional information is included in the calcSize member of the
DialogMessage union u as follows:

struct
{

boolean hookHandled; /* <= TRUE if handled */
int newWidth; /* <= calculated width (in pixels) */
int newHeight; /* <= calculated height (in pixels) */

Field Description

whichCorners Specifies which of the dialog boxes corners moved. See the
mdlWindow_resize function for a description of possible values.

oldFrame Contains the old size of the dialog frame.

oldContent Contains the old size of the dialog content area.

newContent Contains the new size of the dialog content area in global
coordinates.

forceCompleteRedraw Indicates that the hook function wants the complete contents of
the dialog box redrawn aftrer the resize operation is complete. By
default, the dialog box is not redrawn if the visible portions of the
dialog box do not change and the left and top borders are not
moved.
MicroStation MDL Programmer’s Reference Guide 17-17

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_FONTCHANGED message
int dialogWidth; /* <> in dialog coord units */
int dialogHeight; /* <> in dialog coord units */
int newFontHeight; /* => new font's height */
int oldFontHeight; /* => old font's height */

} calcSize;

DIALOG_MESSAGE_FONTCHANGED message

The DIALOG_MESSAGE_FONTCHANGED message is sent when the dialog box is moved
between screens using differing font sizes. DITEM_MESSAGE_FONTCHANGED messages
were already sent to any item hook functions attached to items in the dialog box. The
dialog box size was changed to correspond to the new size calculated when the
DIALOG_MESSAGE_CALCSIZE message was sent.

Field Description

hookHandled Indicates whether the dialog box manager should continue default
handling for calculating the dialog box size. The dialog hook
function should set this field to TRUE to stop the default handling.
In this case, the dialog hook function must set the newWidth,
newHeight, dialogWidth and dialogHeight fields correctly.

newWidth Contains the width (in pixels) the dialog box will have when the
height of the dialog font becomes newFontHeight. The dialog
hook function should set this field if hookHandled is set to TRUE.

newHeight Contains the height (in pixels) the dialog box will have when the
height of the dialog font becomes newFontHeight. The dialog
hook function should set this field if hookHandled is set to TRUE.

dialogWidth Contains the width (in dialog coordinate units) the dialog box will
have when the height of the dialog font becomes newFontHeight.
The dialog hook function should set this field if hookHandled is set
to TRUE. dialogWidth is initially the old width of the dialog in
dialog coordinate units.

dialogHeight Contains the height (in dialog coordinate units) the dialog box will
have when the height of the dialog font becomes newFontHeight.
The dialog hook function should set this field if hookHandled is set
to TRUE. dialogHeight is initially the old height of the dialog in
dialog coordinate units.

newFontHeight Specifies the font height that should be used in calculating the
new size of the dialog box.

oldFontHeight Specifies the height of the dialog box’s old font.
17-18 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_MINIMIZE message
Most dialog hook functions ignore this message unless they need to accomplish a task
(such as repositioning dialog items) when the dialog font changes.

Additional information is included in the fontChanged member of the DialogMessage
union u as follows:

struct
{

int newFontHeight; /* => new font's height */
int oldFontHeight; /* => old font's height */

} fontChanged; /* because dialog now on new screen */

DIALOG_MESSAGE_MINIMIZE message

The DIALOG_MESSAGE_MINIMIZE message is sent to the dialog hook function when the
user presses the minimize button in the dialog title bar to minimize the dialog box or
the mdlWindow_minimize function is called. This message is only generated at minimize
time, not when the dialog is restored to it’s original size. Additional information is
included in the minimize member of the DialogMessage union u as follows:

struct
{

boolean hookHandled; /* <= TRUE if new size returned */
int newWidth; /* <= width of minimized dialog */
int newHeight; /* <= height of minimized dialog */

} minimize;

DIALOG_MESSAGE_MAXIMIZE message

The DIALOG_MESSAGE_MAXIMIZE message is sent to the dialog hook function when the
user presses the maximize button in the dialog title bar to maximize the dialog box or
the mdlWindow_maximize function is called. This message is only generated at

Field Description

newFontHeight Specifies the font height that should be used in calculating the new
size of the dialog box.

oldFontHeight Specifies the height of the dialog box’s old font.

Field Description

hookHandled Indicates that the dialog hook function has returned new values to
be used as the minimized size of the dialog box in pixels.

newWidth Specifies the minimized width of the dialog box in pixels.

newHeight Specifies the minimized height of the dialog box in pixels.
MicroStation MDL Programmer’s Reference Guide 17-19

Dialog Box Manager Hook Functions
Button Messages
maximize time, not when the dialog is restored to it’s original size. Additional
information is included in the maximize member of the DialogMessage union u as
follows:

struct
{

boolean hookHandled; /* <= TRUE if new size returned */
BSIRect newRect; /* <= new content rectangle */

} maximize;

Button Messages
The following messages, documented in this section, are sent when button events
occur:

DIALOG_MESSAGE_PREBUTTON

DIALOG_MESSAGE_BUTTON

DIALOG_MESSAGE_ACTIONBUTTON

DIALOG_MESSAGE_PREBUTTON message,
DIALOG_MESSAGE_BUTTON message

The DIALOG_MESSAGE_PREBUTTON and DIALOG_MESSAGE_BUTTON messages are sent when
a mouse button event occurs somewhere in the dialog box. A button event occurs
when:

• The mouse button is pressed or released.

or

• A button timeout occurs because the mouse button is pressed for an
extended period of time or too much time elapses between presses.

When a button down event occurs, a DIALOG_MESSAGE_PREBUTTON message is sent to
the dialog hook function. This message allows the hook function to interpret the event
in different ways and alter the way MicroStation handles this event. The hook function
may redirect the processing o f the button down event to another item in the dialog by
placing a pointer to the desired dialog item’s raw item header in the buttonRiP field of
the button member structure as defined below. This is typically used for opening
popup menu items in the dialog box and causes all button events up to and including
the subsequent button up event to be sent to this alternate dialog item. A

Field Description

hookHandled Indicates that the dialog hook function has returned new values to
be used as the maximized size and location of the dialog box.

newRect Specifies the new content rectangle for the maximized dialog box in
global, pixel coordinates.
17-20 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_PREBUTTON message, DIALOG_MESSAGE_BUTTON message
DIALOG_MESSAGE_BUTTON message is sent after the PREBUTTON message to either the
item pointed to by the buttonRiP value returned by the dialog hook or item originally
receiving the PREBUTTON if this field is NULL.

If the button event occurs with the mouse cursor inside of a dialog item that has an
item hook function, a DITEM_MESSAGE_BUTTON message has been sent to that function.
Additional information is included in the button member of the DialogMessage union
u as follows:

struct
{

int buttonNumber; /* => button number */
int buttonTrans; /* => type of transition */
int qualifierMask; /* => ctrl/alt/shift keys down */
int upNumber; /* => 1=singleClick,2=dblClick,etc */
boolean clicked; /* => FALSE means press or drag */
ULong buttonTime; /* => time of transition */
Point2d pt; /* => location in local coords */
int itemIndex; /* => item button already sent to */
Inputq_element *iqelP; /* => source queue element */
void (*motionFunc)(); /* <= for mouse down only */
void *motionMD; /* <= for mouse down only */
RawItemHdr *buttonRiP; /* <= item to rcv followup msgs */

} button;

Field Description

buttonNumber Contains the mouse button number. This number will be either
DATAPNT, TENTPNT or RESET. These values are defined in
msbutton.h.

buttonTrans Contains the type of button transition that just occurred. The values,
listed below in the buttonTrans table, are defined in msdefs.h.

qualifierMask Contains the state of the qualifier keys when the button event
occurred. The possible qualifier keys are SHIFTKEY, CTRLKEY and
ALTKEY. These bitmasks are defined in keys.h.
MicroStation MDL Programmer’s Reference Guide 17-21

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_PREBUTTON message, DIALOG_MESSAGE_BUTTON
upNumber Contains the number of times the button was released within the
amount of time specified by the variable doubleClickTime when
buttonTrans is either BUTTONTRANS_UP or BUTTONTRANS_DOWN. When
buttonTrans is equal to BUTTONTRANS_UP, a value of 1 means a
single-click just occurred, 2 means a double-click just occurred, and
so on.

In a button press series, the amount of time between presses must
be less than the amount specified by the doubleClickTime variable.
When buttonTrans is equal to BUTTONTRANS_DOWN, a value of 0
means this is the first button press in the series; a value of 1 means
that this is the next press, and so on.

upNumber specifies the type of button timeout event if buttonTrans
is BUTTONTRANS_TIMEOUT. In this case, upNumber can have the
following values:

clicked Specifies whether the button came back up because of a click. (The
mouse came up within half a doubleClickAmount of time and did
not move by an appreciable distance.) This field is meaningless for
mouse down events.

buttonTime Specifies the time of the button event in ticks.

pt Specifies the location, in local coordinates, of the mouse cursor at
the time of the button event.

itemIndex Specifies the index (0-based) of the item the mouse cursor was on
at the time of the button event. -1 means the mouse cursor was not
inside a mouse-sensitive item.

Field Description

value Meaning

BUTTONTIME-
OUT_CLICK

Indicates that an amount of time
equal to half the value of
doubleClickTime has elapsed
between the time the button last
went down, and when it came back
up.

BUTTONTIME-
OUT_DOUBLECLICK

Indicates that an amount of time
equal to doubleClickTime has
elapsed since the button last went
down.
17-22 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_ACTIONBUTTON message
DIALOG_MESSAGE_ACTIONBUTTON message

This message is generated by the default MicroStation buttons (OK, Cancel, Apply,
Reset and Default) when the user presses and releases the button. Additional
information is included in the actionButton member of the DialogMessage union u as
follows:

iqelP Contains a pointer to the raw input queue element for the button
event. See msinputq.h for the declaration of the InputQ_element
structure.

motionFunc Specifies an MDL function to be called by MicroStation to handle
cursor motion events while the mouse button is pressed. The
motion function will be called every time MicroStation operates on
the cursor while the mouse button is down (i.e., every time it
moves, the cursor is drawn, or a timeout occurs). The motion
function is called with a single parameter, which is a pointer the the
structure shown below.

typedef struct motionfuncarg
{

Point2d pt;
boolean dragging;

} MotionFuncArg;

buttonTrans Value Description

BUTTONTRANS_UP Indicates that the mouse button was just released.

BUTTONTRANS_DOWN Indicates that the mouse button was just pressed.

BUTTONTRANS_TIMEOUT Indicates that a button timeout event just occurred. See upNumber
to determine the type of timeout.

Field Description

field description

pt Specifies the location, in global
coordinates, of the mouse cursor at
the time of the function call.

dragging Specifies whether the cursor has
moved while the mouse button is
pressed down.
MicroStation MDL Programmer’s Reference Guide 17-23

Dialog Box Manager Hook Functions
Open & Close Messages
struct
{

boolean abortAction; /* <= TRUE = abort button action */
int actionType; /* => OK, CANCEL, APPLY, RESET */

} actionButton;

Open & Close Messages
The following messages, documented in this section, are sent when dialog boxes are
created or destroyed:

DIALOG_MESSAGE_CHILDDESTROYED

DIALOG_MESSAGE_ANOTHEROPENED

DIALOG_MESSAGE_ANOTHERCLOSED

DIALOG_MESSAGE_CHILDDESTROYED message

The DIALOG_MESSAGE_CHILDDESTROYED message is sent to a dialog box’s parent when
the dialog is destroyed. The parent dialog box is specified by the parentDialogId field
of a dialog box’s resource specification. The parentId of a dialog box can also be set
with the mdlDialog_parentIdSet function. Additional information is included in the
childDestroyed member of the DialogMessage union u as follows:

struct
{

long childDialogId; /* => child dialog id */
int actionType; /* => only if stdAction button used */

} childDestroyed;

Field Description

abortAction Indicates whether the dialog manager should perform the default
actions done as a result of the push button being activated. If
TRUE, the dialog manager skips all default processing and acts as if
the push button was not activated by the user.

actionType Contains the value last set by a call to the
mdlDialog_lastActionTypeSet function. If the standard push
button hook function is attached to a push button, this field
contains the itemHookArg field of that push button (usually one of
the ACTIONBUTTON_ constants).
17-24 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_ANOTHEROPENED message
DIALOG_MESSAGE_ANOTHEROPENED message

The DIALOG_MESSAGE_ANOTHEROPENED message is sent to all dialog boxes that have set
the otherDialogs field of DialogHookInterests to equal TRUE when any dialog is
opened. Additional information is included in the anotherOpened member of the
DialogMessage union u as follows:

struct
{

DialogBox *db; /* => ptr to dialog opened */
ULong dialogType; /* => type of dialog opened */
long dialogId; /* => id of dialog opened */

} anotherOpened;

DIALOG_MESSAGE_ANOTHERCLOSED message

When any dialog is destroyed, the DIALOG_MESSAGE_ANOTHERCLOSED message is sent to
all dialog boxes that have set the otherDialogs field of DialogHookInterests to TRUE.
Additional information is included in the anotherClosed member of the
DialogMessage union u as follows:

struct
{

DialogBox *db; /* => pointer to dialog closed */
ULong dialogType; /* => type of dialog closed */
long dialogId; /* => id of dialog closed */
int actionType; /* => only if stdAction button used */

} anotherClosed;

Field Description

childDialogId Contains the ID of the dialog box that was just destroyed.

actionType Contains the value last set by a call to the
mdlDialog_lastActionTypeSet function. If the standard push
button hook function is attached to a push button, this field
contains the itemHookArg field of that push button (usually one of
the ACTIONBUTTON_ constants) instead.

Field Description

db Contains an opaque pointer to the dialog box that was just opened.

dialogType Contains the type of the dialog box that was just opened.

dialogId Contains the ID of the dialog box that was just opened.
MicroStation MDL Programmer’s Reference Guide 17-25

Dialog Box Manager Hook Functions
Miscellaneous Messages
Miscellaneous Messages
The following messages, documented in this section, are sent when various user
interface events occur:

DIALOG_MESSAGE_UPDATE

DIALOG_MESSAGE_SYNCH

DIALOG_MESSAGE_STATECHANGED

DIALOG_MESSAGE_USER

DIALOG_MESSAGE_UPDATE message

After the dialog box manager has drawn the contents of a dialog box, it sends the
DIALOG_MESSAGE_UPDATE message to the dialog hook function.

DIALOG_MESSAGE_SYNCH message

The DIALOG_MESSAGE_SYNCH message is sent when the dialog box is synched by the
mdlDialog_itemsSynch function. DITEM_MESSAGE_SYNCHRONIZE messages have already
been sent to all item hook functions attached to items in the dialog box.

DIALOG_MESSAGE_STATECHANGED message

The DIALOG_MESSAGE_STATECHANGED message is sent to the dialog hook function after
the dialog item state has changed. If the dialog item has a hook function, the item hook
function has already been sent the DITEM_MESSAGE_STATECHANGED message.

Information about the command is included in the stateChanged member of the
DialogMessage union u as follows:

Field Description

db Contains an opaque pointer to the dialog box that was just
destroyed.

dialogType Contains the type of the dialog box that was just destroyed.

dialogId Contains the ID of the dialog box that was just destroyed.

actionType Contains the value last set by a call to the
mdlDialog_lastActionTypeSet function. If the standard push
button hook function is attached to a push button, this field
contains the itemHookArg field of that push button (usually one of
the ACTIONBUTTON_ constants).
17-26 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DIALOG_MESSAGE_USER message
struct
{

int itemIndex; /* => index of item that changed */
boolean reallyChanged; /* => if setState noticed difference */
RawItemHdr *riP; /* => item that changed */

} stateChanged;

DIALOG_MESSAGE_USER message

The DIALOG_MESSAGE_USER message can be sent to a dialog hook function with the
mdlDialog_hookDialogSendUserMsg function. This message is useful for setting up a
general item hook used for items in different dialog boxes. The item hook sends user
messages to each dialog box’s dialog hook function. These dialog hook functions are
then set up to handle the user messages.

Additional information is included in the user member of the DialogMessage union u
as follows:

struct
{

int type; /* => type of user message */
void *userDataP; /* => user specified ptr */

} user;

Field Description

itemIndex Specifies the item index (0-based) of the dialog item which
changed.

reallyChanged Indicates whether the item handler recognized a difference in the
state of the item during DITEM_MESSAGE_SETSTATE processing.

riP Specifies a pointer to the Raw Item Header of the item which
changed.

Field Description

type Contains the type that is specified in the
mdlDialog_hookDialogSendUserMsg function call.

userDataP Contains the userDataP field that is specified in the
mdlDialog_hookDialogSendUserMsg function call.
MicroStation MDL Programmer’s Reference Guide 17-27

Dialog Box Manager Hook Functions
DialogItemMessage structure
Item Hook Functions
A basic item hook function should look as follows:

Public void dialogBoxName_specificItemtypeHook
(
DialogItemMessage *dimP
)
{

dimP->msgUnderstood = TRUE;
switch (dimP->messageType)
{

case DITEM_MESSAGE_CREATE:
{

...
break;

}
case DITEM_MESSAGE_DESTROY:
{

...
break;

}

...
default:
{

dimP->msgUnderstood = FALSE;
break;

}
}

}

Item hook functions are set up similarly to dialog hook functions: one switch statement
tests for various messages, and then handles them.

DialogItemMessage structure
The DialogItemMessage structure that is the only argument to an item hook function is
declared as follows (from dlogitem.h):

typedef struct dialogitemmessage
{

boolean msgUnderstood; /* <= item understood the message */
int messageType; /* => message type */
DialogBox *db; /* => dialog box handle */
long dialogId; /* => resource id of dialog box */
int itemIndex; /* => index of item msg sent to */
17-28 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DialogItem structure
DialogItem *dialogItemP; /* => dialogItem info for item */
int auxMessageType; /* => item specific message type */
void *auxInfoP; /* => item specific message info */
union
{

...
structures that contain information that
depends on messageType.

} u;
} DialogItemMessage;

Structures that contain information that depends on messageType are discussed in the
section on the individual dialog item messages.

DialogItem structure
The header for a dialog item message contains a DialogItem field. Every dialog item in
a dialog box can be uniquely identified by a pointer to its DialogItem field. The
mdlDialog_itemGetByTypeAndId or mdlDialog_itemGetByIndex functions can be used
to obtain a pointer to an item that is different than the one a particular message is
directed to.

Field Description

msgUnderstood Indicates whether the item hook function understands the message. If it
understands the message, the function sets msgUnderstood to TRUE. If
the mesage is not understood, the item handlers take specific actions
automatically, depending on the value of messageType. Some messages
also have a hookHandled member. This member indicates that the hook
function not only understands the message, but it handled it completely
and the item handler should not perform any further default processing.

messageType Type of item message. The individual messages are discussed in the
next section.

db Opaque pointer to the dialog box intended for the message. The pointer
is usually passed on to other dialog box manager functions.

dialogId ID of the dialog box the message is intended for.

itemIndex Index (0-based) of the item the message is intended for.

dialogItemP Pointer to the DialogItem field of the item the message is for. The
DialogItem declaration is discussed in the next table.

auxMessageType Type of auxiliary message. This field is used internally by the dialog box
manager and can be ignored.

auxInfoP Additional information needed for auxiliary messages. The dialog box
manager uses this field internally and it can be ignored.
MicroStation MDL Programmer’s Reference Guide 17-29

Dialog Box Manager Hook Functions
DialogItem structure
The DialogItem and associated structures have the following declarations (from
dlogitem.h):

typedef struct dialogitemattributes
{

ULong acceptsKeystrokes:1; /* keystroke input possible */
ULong mouseSensitive:1; /* mouse events possible */
ULong traversable:1; /* kbd navigation possible */
ULong canHaveSynonyms:1; /* synonym resources refs */
ULong enabled:1; /* TRUE = enabled */
ULong hidden:1; /* TRUE = hidden */
ULong hasFocus:1; /* TRUE = has input focus */
ULong updateFlag:1; /* internal use only */
ULong xPosLocked:1; /* internal use only */
ULong yPosLocked:1; /* internal use only */
ULong unused:6;
ULong unused2:8;
ULong unused3:8;

} DialogItemAttributes;

typedef struct dialogitem
{

long type;
long id;
int itemIndex;
int itemArg;
Rectangle rect; /* mouse sensitive/update region of item */
Sextent extent; /* (in dcoord units) for fontChange msgs */
Point2d origin; /* for fontChange msgs */
DialogItemAttributes attributes;
RawItemHdr *rawItemP;

} DialogItem;

Field Description

type Specifies the type of the dialog item.

id Specifies the ID of the dialog item.

itemIndex Specifies the index (0-based) of the dialog item. This is the item’s
position within the dialog item list. This field will change if items are
inserted or deleted from the dialog box containing the item.

itemArg Contains the itemArg field that is used in the dialog box’s
DialogItemRsc item list specification.

rect Specifies the mouse-sensitive/update region of the item in pixels.

extent Specifies the mouse-sensitive/update region of the item in dialog
coordinate units. This field can be used to handle the
DITEM_MESSAGE_FONTCHANGED message.
17-30 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DialogItem structure
.

origin Specifies the origin that should be used with the extent field. Items can
be located relative to an origin different than the upper left corner of a
dialog box. This field stores that origin.

attributes Contains the item’s attributes. The attributes for an item are described by
the DialogItemAttributes structure. The application program should
never set/clear any of the bits in this structure except as may be later
described in this section. Changes to information affects the way the
dialog manager handles an item.The fields of this structure are described
in the attributes table below.

rawItemP Contains a pointer to the item’s RawItemHdr declaration. The
RawItemHdr declaration is discussed in the next table.

attributes Value Meaning

acceptsKeystrokes Indicates whether the item can accept keystrokes events
as input for processing.

mouseSensitive Indicates whether the item can accept mouse events as
input for processing.

traversable Indicates whether the item can be traversed using
keyboard navigation through the dialog box.

canHaveSynonyms Indicates whether the item can associated with other
items through synonym resources.

enabled Indicates whether the item is ENABLED or DISABLED.
ENABLED items are displayed in full intensity and can
received user input and focus. DISABLED items are
displayed in half intersity and can not be selected by the
user.

hidden Indicates whether the item is displayed in the dialog box.
If HIDDEN, an item is not visible to the user and can not
receive input focus.

hasFocus An internal flag not currently used.

updateFlag An internal flag used to indicate whether the item has
been drawn in the dialog box.

xPosLocked An internal flag used for locking the X position of the
item when working with tool palette slamdowns. This
attribute should be ignored.

yPosLocked An internal flag used for locking the Y position of the
item when working with tool palette slamdowns. This
attribute should be ignored.

Field Description
MicroStation MDL Programmer’s Reference Guide 17-31

Dialog Box Manager Hook Functions
RawItemHdr structure
RawItemHdr structure
The DialogItem structure contains information specified in the dialog box’s
DialogItemRsc item list specification. On the other hand, the RawItemHdr structure
contains information that is usually specified in an item’s resource specification. A field
that does not apply to a particular type of item is set to zero.

A pointer to an item’s RawItemHdr structure uniquely identifies it, just like a pointer to
an item’s DialogItem field does. Also, one of these pointers can be obtained from the
other. The RawItemHdr structure has the following declaration (from dlogitem.h):

/* this structure must be at the beginning of all runtime items */
struct rawitemhdr
{

void *userDataP; /* for use by itemHooks */
char *accessStrP; /* access str to app variable */
char *labelP; /* items label or NULL */
Point2d labelPt; /* position of label */
Rectangle itemRect; /* item specific rectangle */
ULong helpInfo; /* item help */
ULong helpSource; /* help file indicator */
long synonymsId; /* id of synonyms resource */
UShort highlightOn:1; /* highlight state */
void *itemHookMD; /* mdl process descrip for hook */
long itemHookOffset; /* mdl hook offset */
long itemHookArg; /* rsc defined arg to hook func */
void *ownerDialogP; /* ptr to owner dialog box */
DialogItem *diP; /* ptr to dialog item struct */
DialogItem *parentDiP; /* ptr to parent dialog item */
long itemHookId; /* mdl hook id */
int mnemonic; /* keyboard mnemonic */
int mneIndex; /* mnemonic index */
int nColorPs; /* Number of colors settings */
BSIColorDescr **colorsPP; /* colors for each setting */
DialogItemHandlerInfo *itemHandlerP;/* item handler info */
BSIRect traversalRect; /* highlight rectangle */
void *ownerMD; /* owner MDL descriptor */
ULong commandNumber; /* command assoc with item */
char *commandTaskId; /* task owning command */
char *unparsedP; /* command parms */
void *auxP; /* ptr to pulldown menu item */
void *popupWindP; /* ptr to popup window */
RawItemHdr *childFocusRiP; /* child item which has focus */
ArrayObjectHdr *childArrayP; /* array of child items */
};
17-32 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
RawItemHdr structure
Field Description

userDataP Stores a pointer to user-defined data. The dialog box manager does not
store its information in this field.

accessStrP Points to the item’s access string. If this field is NULL, no access string
exists.

labelP Points to the item’s label. If this field is NULL, no label exists.

labelPt Specifies the position of the item’s label in pixels.

itemRect Specifies an item-specific rectangle for the item in pixels. The various
item handlers use this field internally, and the field can be ignored.

helpInfo Contains the value of the helpInfo field that is specified in the item’s
resource specification.

helpSource Contains the value of the helpSource field that is specified in the item’s
resource specification.

synonymsId Contains the value of the synonymsId field that is specified in the item’s
resource specification.

highlightOn Specifies whether the item currently displays in a highlighted state. The
various item handlers use this field internally, and the field can be
ignored.

itemHookMD The various item handlers use this field internally, and it should be
ignored.

itemHookOffset The various item handlers use this field internally, and it should be
ignored.

itemHookArg Contains the value of the itemHookArg field that is specified in the item’s
resource specification.

ownerDialogP Points to the dialog box that contains the item.

diP Points to the item’s DialogItem field.

parentDiP Points to the DialogItem field of the item’s parent item. The various
item handlers use this field internally, and it can be ignored.

itemHookId The various item handlers use this field internally, and it should be
ignored.

mnemonic The dialog manager uses this field internally, and it should be ignored.

mneIndex The various item handlers use this field internally, and it should be
ignored.

nColorPs The number of entries in colorsPP (typically set to
DITEM_COLORTYPE_NCOLORS). This is an internally used field and should
not be modified by the application.
MicroStation MDL Programmer’s Reference Guide 17-33

Dialog Box Manager Hook Functions
Item Hook Function Messages
Item Hook Function Messages
The messageType field of a dialog item message determines the message’s type. This
section discusses each individual dialog item message, including any additional
information. The following messages are listed in this section:

colorsPP The array of color descriptors for the item. This information in this array
is set using mdlDialog_itemSetColor and retrieved using
mdlDialog_itemGetColor.

itemHandlerP The various item handlers use this field internally, and it should be
ignored.

traveralRect The various item handlers use this field internally, and it should be
ignored.

ownerMD Specifies the MDL Descriptor for the owning MDL task.

commandNumber Command number to be queued when the item is activated.

comamndTaskId Specifies the owner of the command to be queued.

unparsedP Pointer to the unparsed character string to be queued along with the
command.

auxP The various item handlers use this field internally, and it should be
ignored.

popupWindP The various item handlers use this field internally, and it should be
ignored.

childFocusRiP The dialog manager uses this field internally, and it should be ignored.

childArrayP The dialog manager uses this field internally, and it should be ignored.

General Message Sent

DITEM_MESSAGE_CREATE After an item is created.

DITEM_MESSAGE_ALLCREATED After all the items contained in the parent dialog box
have been sent the DITEM_MESSAGE_CREATE message.

DITEM_MESSAGE_INIT After an item is created, and after its internal value is
initialized with the state of an underlying application
variable.

DITEM_MESSAGE_DESTROY When an item is about to be destroyed.

DITEM_MESSAGE_GETSTATE When an item handler needs to determine an item’s
state.

DITEM_MESSAGE_SETSTATE When an item handler needs to set an item’s state.

Field Description
17-34 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
Item Hook Function Messages
DITEM_MESSAGE_QUEUECOMMAND After the DITEM_MESSAGE_SETSTATE message if an
item’s internal value differed from its state.

DITEM_MESSAGE_SYNCHRONIZE When an item’s visible display and internal value is
forced to match the item’s external state.

DITEM_MESSAGE_STATECHANGED When an item’s state changes.

DITEM_MESSAGE_USER To an item hook function with the
mdlDialog_hookItemSendUserMsg function to send
message from one item hook to another.

DITEM_MESSAGE_BUTTON When a mouse button event occurs within a mouse-
sensitive item.

DITEM_MESSAGE_JOURNALSTATE When CAD input journaling is active and the internal
state of an item has changed.

Input focusable Message Sent

DITEM_MESSAGE_FOCUSIN When an item gains the input focus.

DITEM_MESSAGE_FOCUSOUT When an item will soon lose the input focus.

DITEM_MESSAGE_KEYSTROKE When a key is pressed while the item has the input
focus.

DITEM_MESSAGE_POSTKEYSTROKE After the item handler’s default keystroke handling
processes a key.

Generic Message Sent

DITEM_MESSAGE_SETLABEL When the item’s label needs to be changed.

DITEM_MESSAGE_GETVALUE When the item’s internal value is needed.

DITEM_MESSAGE_SETVALUE When the item’s internal value will be set.

DITEM_MESSAGE_DRAW When the item should draw itself.

DITEM_MESSAGE_HIGHLIGHT When the item needs to change its highlight state.

DITEM_MESSAGE_MOVE When the item needs to be moved.

DITEM_MESSAGE_SETEXTENT When the item size needs to be changed.

DITEM_MESSAGE_FONTCHANGED When the dialog box is moved to a screen that uses
a different font size than the previous screen.

DITEM_MESSAGE_SETENABLEDSTATE When the item’s enabled state is changed.

General Message Sent
MicroStation MDL Programmer’s Reference Guide 17-35

Dialog Box Manager Hook Functions
General item hook function messages
General item hook function messages
A dialog item message’s messageType field determines the message’s type. Based on
this field’s value, the DialogItemMessage structure’s u field can have additional
information. This section discusses each dialog item message, including any additional
information.

The dialog item message structures are not used only for item hook functions. In
addition, the item handler functions that actually implement the standard dialog items
use them. In fact, many of the fields are appropriate for item handlers, and these fields
can be safely ignored for item hook functions.

DITEM_MESSAGE_CREATE message

The DITEM_MESSAGE_CREATE message is sent after an item is created. All item handlers
will send this message. Additional information is included in the create member of the
DialogItemMessage union u as follows:

struct
{

boolean createFailed; /* <= set TRUE if error */
void *resourceDataP; /* => */
Sextent *itemListExtentP; /* => */
char *labelP; /* => */
long itemArg; /* => */
void *ownerMD; /* => */
DialogItem *parentDiP; /* => NULL = owner is dialog */
boolean dontDisplayAlert; /* <= TRUE = no alert msg */

} create;

DITEM_MESSAGE_ACTIVATE When the item is activated.

DITEM_MESSAGE_JOURNALSTATE When CAD input journaling is active and the internal
state of an item has changed.

Field Description

createFailed Indicates whether the item hook function’s handling of the create
message failed. If so, the function sets this field to TRUE. The dialog box
will then remain unopened and an alert will display instead.

resourceDataP Points to the item’s loaded resource specification.

itemListExtentP Points to the extent (in pixels) that is specified in the item’s item list
specification.

labelP Points to the dialog item list override label. The various item handlers
use this field internally, and it can be ignored.

Generic Message Sent
17-36 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DITEM_MESSAGE_ALLCREATED message
Item hook functions usually need to allocate memory for an item in their
DITEM_MESSAGE_CREATE message handling and store a pointer to the data in the
allocated memory in dimP->dialogItemP->rawItemP->userDataP. At this point, items
later in the dialog item list are not yet created, so manipulating them is illegal (and
meaningless). Instead, multi-item initializations should be handled in a dialog hook
function when the DIALOG_MESSAGE_INIT message is received.

DITEM_MESSAGE_ALLCREATED message

The DITEM_MESSAGE_ALLCREATED message is sent after the all items contained in the
parent dialog box have been sent the DITEM_MESSAGE_CREATE message. Additional
information is included in the allCreated member of the DialogItemMessage union u
as follows:

struct
{

boolean createFailed; /* <= set TRUE if error */
} allCreated;

DITEM_MESSAGE_INIT message

The DITEM_MESSAGE_INIT message is sent after the item is created, and after its internal
value is initialized with the state of an underlying application variable. Additional
information is included in the init member of the DialogItemMessage union u as
follows:

itemArg Contains the value of the itemArg field that is specified in the item’s
item list specification.

ownerMD The various item handlers use this field internally, and it should be
ignored.

parentDiP Points to the DialogItem field of the item’s parent item.The various item
handlers use this field internally, and it can be ignored.

dontDisplayAlert Indicates whether or not an alert box should be displayed if the create
fails for any reason. A value of TRUE indicates that no alert box should
be displayed.

Field Description

createFailed Indicates whether the item hook function’s handling of this message
failed. If so, the function sets this field to TRUE. The dialog box will then
remain unopened and an alert will display instead.

Field Description
MicroStation MDL Programmer’s Reference Guide 17-37

Dialog Box Manager Hook Functions
DITEM_MESSAGE_DESTROY message
struct
{

boolean initFailed; /* <= set TRUE if error */
} init; /* sent after initial GetState */

DITEM_MESSAGE_DESTROY message

The DITEM_MESSAGE_DESTROY message is sent when the item is about to be destroyed.
Memory that was allocated in response to the DITEM_MESSAGE_CREATE or
DITEM_MESSAGE_INIT message should be freed at this time.

DITEM_MESSAGE_GETSTATE message

The DITEM_MESSAGE_GETSTATE message is sent when an item handler needs to
determine an item’s state (the value of the item’s underlying application variable). This
state is then typically used to set the item’s internal value. Additional information is
included in the value member of the DialogItemMessage union u as follows:

struct /* used by GETSTATE, SETSTATE, GETVALUE, SETVALUE */
{

boolean hookHandled; /* <= only for hooks,TRUE = handled */
boolean valueChanged; /* <= on SET's if value changed */
int formatType; /* defined in vartypes.h */
ValueUnion value;
char *stringValueP; /* only if string */
char *formatStrP; /* only if string */
int maxStringSize; /* only if string & GETs */

} value;

Field Description

initFailed Indicates whether the item hook function’s handling of the init message
failed. If so, the function sets this field to TRUE. The dialog box will then
remain unopened and an alert will display instead.

Field Description

hookHandled Indicates whether the dialog box manager should continue its default
handling for obtaining the item state. The item hook function should set
this field to TRUE to stop the default handling.

valueChanged Is ignored for the DITEM_MESSAGE_GETSTATE message.
17-38 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DITEM_MESSAGE_SETSTATE message
Sometimes the “state” of an application variable is not a simple thing to determine, or
the “variable” is really a set of variables. In those cases, the item hook function can trap
the DITEM_MESSAGE_GETSTATE and DITEM_MESSAGE_SETSTATE messages to come up
with a composite state that can be used to set an item’s internal value.

DITEM_MESSAGE_SETSTATE message

The DITEM_MESSAGE_SETSTATE message is sent when an item handler needs to set an
item’s state (the value of its underlying application variable) using the item’s internal
value. Remember that with modal dialogs, unless the DIALOGATTR_ALWAYSSETSTATE
attribute is set, SETSTATE messages will not be sent until the user OK’s the modal
dialog box. If the user cancels the dialog box, SETSTATE messages will never be sent.
This leaves the dialog box items’ underlying application variables unchanged, which is
what is desired when canceling a dialog.

formatType Returns the item state’s format if the item hook function is handling the
DITEM_MESSAGE_GETSTATE message.
formatType is FMT_LONG (defined in vartypes.h) for all items with an
internal value that is an integer. In this case, the item state should be
returned in: dimP->u.value.value.sLongFormat
Currently, all items except text items specify FMT_LONG for formatType.
formatType is FMT_STRING (defined in vartypes.h) for all items whose
internal value is stored as a string. Currently, only text items meet this
requirement. In this case, the item hook function returns the item state
by setting the string pointed to by dimP->u.value.stringValueP.

value Returns the item’s state for all items except text items. This field is a
union of the standard C types. Currently, all items except text items use
the signed long member dimP->u.value.value.sLongFormat to return
the item’s state. Text items expect the string pointed to by the
stringValueP field to be set to the item’s state.

stringValueP Returns the item’s state if the item’s internal value is contained in a
string. (Currently, only text items store their internal values as strings.)
The string pointed to by stringValueP should be set to the item’s state.

formatStrP Points to the formatToDisplay string that is part of an item’s resource
specification. This pointer, if non-NULL, can be used with the sprintf
function to convert an application variable to a string. This field is used
only if the item stores its internal value as a string. (Currently, only text
items store their internal values as strings).

maxStringSize Specifies the size of the buffer pointed to by stringValueP. The size of
the string copied in the buffer should not exceed maxStringSize. This
field is used only if a string will be returned.

Field Description
MicroStation MDL Programmer’s Reference Guide 17-39

Dialog Box Manager Hook Functions
DITEM_MESSAGE_SETSTATE message
See “Modeless and modal dialog boxes” on page 15-10 for more information on modal
dialog boxes.

Additional information is included in the value member of the DialogItemMessage
union u as follows:

struct /* used by GETSTATE, SETSTATE, GETVALUE, SETVALUE */
{

boolean hookHandled; /* <= only for hooks,TRUE = handled */
boolean valueChanged; /* <= on SET's if value changed */
int formatType; /* defined in vartypes.h */
ValueUnion value;
char *stringValueP; /* only if string */
char *formatStrP; /* only if string */
int maxStringSize; /* only if string & GETs */

} value;

Field Description

hookHandled Indicates whether the dialog box manager should continue default
handling for setting the item state. The item hook function should set
this field to TRUE to stop the default handling.

valueChanged Contains an indication of whether the item’s internal value differed from
the item’s external state. The item hook function should set this field if
hookHandled is TRUE.

formatType Specifies the type of the item’s internal value.
If formatType is FMT_LONG, the item’s internal value is stored as a signed
long and can be found in the value.sLongFormat field.
If formatType is FMT_STRING the item’s internal value is stored as a
string that is pointed to by stringValueP.
Currently, formatType will be FMT_LONG (defined in vartypes.h) for all
items except text items. For text items, it will be FMT_STRING.

value Specifies the item’s internal value for all items except text items. This
field is a union of the standard C types. Currently all items except text
items use the signed long member dimP->u.value.value.sLongFormat
to contain the item’s internal value. Text items will set the stringValueP
field to point to the item’s internal string value.

stringValueP Points to the item’s internal value if the value is contained in a string.
(Currently, only text items store their internal values as strings).

formatStrP Points to the formatToInternal string that is part of an item’s resource
specification. This pointer, if non-NULL, can be used with the sscanf
function to convert an item’s internal string to an application variable.
This field is used only if the item stores its internal value as a string.
(Currently, only text items store their internal values as strings.)

maxStringSize Is ignored for the DITEM_MESSAGE_SETSTATE message.
17-40 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DITEM_MESSAGE_QUEUECOMMAND message
DITEM_MESSAGE_QUEUECOMMAND message

The DITEM_MESSAGE_QUEUECOMMAND message is sent after the DITEM_MESSAGE_SETSTATE
message if the item’s internal value differed from its state. It can be used to dynamically
determine the command to queue based on the item’s or dialog box’s state. Additional
information is included in the queueCommand member of the DialogItemMessage union
u as follows:

struct
{

boolean hookHandled; /* <= only for hooks,TRUE = handled */
int subItemIndex; /* => */

} queueCommand;

DITEM_MESSAGE_SYNCHRONIZE message

The DITEM_MESSAGE_SYNCHRONIZE message is sent when an item’s visible display and
internal value is forced to match the item’s external state (the value of its underlying
application variable). Additional information is included in the synchronize member
of the DialogItemMessage union u as follows:

struct
{

boolean redrawn; /* => item had to be redrawn */
} synchronize;

DITEM_MESSAGE_STATECHANGED message

The DITEM_MESSAGE_STATECHANGED message is sent when an item’s state has changed.
Information about the command is included in the stateChanged member of the
DialogItemMessage union u as follows:

Field Description

hookHandled Indicates whether the dialog box manager should continue default
handling for queuing a command. After it queues a command, the item
hook function should set this field to TRUE to prevent the item handler
from queuing another command.

subItemIndex Contains the current subitem index for the item. For certain items, such
as option buttons, knowing the item’s current value is useful in
determining the command to queue. (An option button’s current value
is also the index of the subitem currently selected. For this reason, this
field is called subItemIndex).

Field Description

redrawn TRUE if the item had to be redrawn in order to match its external state.
MicroStation MDL Programmer’s Reference Guide 17-41

Dialog Box Manager Hook Functions
DITEM_MESSAGE_USER message
struct
{

boolean reallyChanged; /* => TRUE=item's value changed */
} stateChanged;

DITEM_MESSAGE_USER message

The DITEM_MESSAGE_USER message can be sent to an item hook function with the
mdlDialog_hookItemSendUserMsg function. This function can be used to send
messages from one item hook function to another. Additional information is included
in the user member of the DialogItemMessage union u as follows:

struct
{

int type; /* => type of user message */
void *userDataP; /* => */

} user;

DITEM_MESSAGE_BUTTON message

The DITEM_MESSAGE_BUTTON message can be sent only for items that are mouse-
sensitive. See the individual item descriptions in “Standard Dialog Box Items” on page
16-1 to determine if this message will be sent to an item’s hook function.

This message is sent when a mouse button event occurs within a mouse-sensitive item.
The screen extent of an item is specified in its DialogItem rect field. (See
“DialogItemRsc Structure” on page 16-6 for more information). A button event happens
when the mouse button is pressed or released, or when a button timeout occurs
because the mouse button is pressed for an extended period of time or too much time
elapses between presses. Additional information is included in the button member of
the DialogItemMessage union u as follows:

Field Description

reallyChanged Indicates whether, during DITEM_MESSAGE_SETSTATE processing, an
actual change in the value of the dialog item was detected. If the user
selected the dialog item but entered or selected the same value as was
there before, the item’s state will have changed but reallyChanged will
return FALSE.

Field Description

type Contains the type that is specified in the
mdlDialog_hookItemSendUserMsg function call.

userDataP Contains the userDataP that is specified in the
mdlDialog_hookItemSendUserMsg function call.
17-42 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DITEM_MESSAGE_BUTTON message
struct
{

boolean couldSetState; /* <= if not modal, could set State */
void (*motionFunc)(); /* <= for mouse down only */
void *motionMD; /* <= for mouse down only

(only for item handlers) */
int buttonNumber; /* => button number */
int buttonTrans; /* => type of transition */
int qualifierMask; /* => ctrl/alt/shift keys down */
int upNumber; /* => 1=singleClick, 2=dblClick,etc */
boolean clicked; /* => FALSE = press or drag */
ULong buttonTime; /* => time of transition */
Point2d pt; /* => point in local coords */
Inputq_element *iqelP;

} button;

field Description

couldSetState Specifies whether the item state should be changed as a result of the
button event. The item hook function should set this field to TRUE if the
item state should be changed. The various item handlers use this field
internally, and it can be ignored except for generic items.

motionFunc Specifies the address of a function that should be called while the
mouse moves with the button pressed. This field is used only if
buttonTrans is BUTTONTRANS_DOWN, and only for generic items.
The motion function specified should accept a single argument: a
pointer to a MotionFuncArg structure (defined in dlogitem.h).

motionMD (This field is used internally by the various item handlers and can be
ignored.)

buttonNumber Contains the mouse button number. This number will be either DATAPNT,
TENTPNT or RESET.

buttonTrans Contains the type of button transition that just occurred.

value description

BUTTONTRANS_UP Indicates that the mouse button was
just released.

BUTTONTRANS_DOWN Indicates that the mouse button was
just pressed.

BUTTONTRANS_TIME
OUT

Indicates that a button timeout event
just occurred. See upNumber to
determine the type of timeout.
MicroStation MDL Programmer’s Reference Guide 17-43

Dialog Box Manager Hook Functions
DITEM_MESSAGE_BUTTON message
qualifierMask Contains the state of the qualifier keys when the button event occurred.
The possible qualifier keys are SHIFTKEY, CTRLKEY and ALTKEY.
These bitmasks are defined in keys.h.

upNumber Contains the number of times the button was released within the
amount of time specified by the variable doubleClickTime when
buttonTrans is either BUTTONTRANS_UP or BUTTONTRANS_DOWN. When
buttonTrans is equal to BUTTONTRANS_UP, a value of 1 means a single-
click just occurred, 2 means a double-click just occurred, and so on.

In a button press series, the amount of time between presses must be
less than the amount specified by the doubleClickTime variable. When
buttonTrans is equal to BUTTONTRANS_DOWN, a value of 0 means this is
the first button press in the series; a value of 1 means that this is the
next press, and so on.

upNumber specifies the type of button timeout event if buttonTrans is
BUTTONTRANS_TIMEOUT. In this case, upNumber can have the following
values:

clicked Specifies whether the button came back up because of a click. (The
mouse came up within half a doubleClickAmount of time and did not
move by an appreciable distance). This field is meaningless for mouse
down events.

buttonTime Specifies the time of the button event in ticks.

pt Specifies the location, in local coordinates, of the mouse cursor at the
time of the button event.

iqelP Contains a pointer to the raw input queue element for the button event.
See msinputq.h for the declaration of the InputQ_element structure.

field Description

value description

BUTTONTIMEOUT_CL
ICK

Indicates that more than half a
doubleClickTime amount of time
elapsed between the time the button
last went down and when it came
back up.

BUTTONTIMEOUT_DO
UBLECLICK

Indicates that more than a
doubleClickTime amount of time
elapsed since the button last went
down.
17-44 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DITEM_MESSAGE_JOURNALSTATE message
DITEM_MESSAGE_JOURNALSTATE message

When CAD input journaling is active, the DITEM_MESSAGE_JOURNALSTATE message is
sent after the DITEM_MESSAGE_SETSTATE message if the item’s internal value differed
from it’s state and before the DITEM_MESSAGE_QUEUECOMMAND is sent. This message can
be used to journal a command equivalent to setting the item’s access string or to
prevent any journaling at all. At this time, CAD input journaling is used to generate
macros.

Additional information is included in the value member of the
DialogItemMessage union u as follows:

struct /* used by GETSTATE, SETSTATE, GETVALUE, SETVALUE */
{

boolean hookHandled; /* <= only for hooks,TRUE = handled */
boolean valueChanged; /* <= on SET's if value changed */
int formatType; /* defined in vartypes.h */
ValueUnion value;
char *stringValueP; /* only if string */
char *formatStrP; /* only if string */
int maxStringSize; /* only if string & GETs */

} value;

field Description

hookHandled Indicates whether the dialog box manager should continue default
handling for journaling the item state. The item hook function should
set this field to TRUE to stop default handling.

valueChanged Is ignored for the DITEM_MESSAGE_JOURNALSTATE message.

formatType Specifies the type of the item’s internal value.
If formatType is FMT_LONG, the item’s internal value is stored as a signed
long and can be found in the value.sLongFormat field.
If formatType is FMT_DPFP, the item’s internal value is stored as a double
precision floating point value and can be found in value.doubleFormat
field.
If formatType is FMT_STRING, the item’s internal value is stored as a
string that is pointed to by stringValueP.

value Specifies the item’s internal value for all items except text items. This
field is a union of the standard C types. Text items will set the
stringValueP field to point to the item’s internal string value.

stringValueP Points to the item’s internal value if the value is contained in a string.
MicroStation MDL Programmer’s Reference Guide 17-45

Dialog Box Manager Hook Functions
Input focusable item hook function messages
Input focusable item hook function messages
Input focusable item hook function messages can be sent only for items that can
accept the input focus. See the individual item descriptions in “The Standard Dialog
Box Items” to determine whether a message will be sent to an item’s hook function.

The first two of these messages use the focusOutType field, which can have the
following values:

DITEM_MESSAGE_FOCUSIN message

The DITEM_MESSAGE_FOCUSIN message is sent when an item gains the input focus.
Additional information is included in the focusIn member of the DialogItemMessage
union u.

formatStrP Points to the formatToInternal string that is part of an item’s resource
specification. This pointer, if non-NULL, can be used with the sscanf
function to convert an item’s internal string to an application variable.
This field is used only if the item stores its internal value as a string.

maxStringSize Is ignored for the DITEM_MESSAGE_JOURNALSTATE message.

focusOutType Value Meaning

FOCUSOUT_KEYSWITCH Focus has changed as a result of a keyboard
action.

FOCUSOUT_BUTTONSWITCH Focus has changed as a result of a button
action.

FOCUSOUT_SETITEM Focus has changes as a result of a dialog item
programmatically being assigned focus.

FOCUSOUT_HIDEITEM Focus has changed as a result of the previous
item being hidden.

FOCUSOUT_DISABLEITEM Focus has changed as a result of the previous
item being disabled.

FOCUSOUT_SWITCHDIALOG Focus has changed as a result of a new dialog
box receiving focus.

FOCUSOUT_APPLYDIALOG Focus has changed as a result of an apply
operation being performed on the dialog box
containing the item.

field Description
17-46 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DITEM_MESSAGE_FOCUSOUT message
struct
{

int focusOutType; /* => reason focus out of prev item */
} focusIn;

DITEM_MESSAGE_FOCUSOUT message

The DITEM_MESSAGE_FOCUSOUT message is sent when an item will soon lose the input
focus. When receiving the DITEM_MESSAGE_FOCUSOUT message, the item hook function
can optionally determine whether the item’s internal value is out of range. Additional
information is included in the focusOut member of the DialogItemMessage union u as
follows:

struct
{

boolean hookHandled; /* <= only for hooks,TRUE = handled */
boolean outOfRange; /* <= if current value out of range */
int nextFocusItemIndex; /* <=> index of next focus item */
char *stringValueP; /* => hooks only, string value */
char *formatStrP; /* => hooks only, to internal format */
char *minStrP; /* => hooks only, max string */
char *maxStrP; /* => hooks only, min string */
int focusOutType; /* => reason for focus out */
int moveDirection; /* <=> 1: forward, -1: backward */
RawItemHdr *nextFocusRiP; /* <=> next item to get focus */

} focusOut;

Field Description

focusOutType Specifies the reason the focus changed from the previous item to the
one about to get focus. Possible values for this field are listed at the top
of this section and are defined in msdefs.h.

Field Description

hookHandled Indicates whether the dialog box manager should continue its default
handling for the focus out message. The item hook function should
set this field to TRUE to stop the default handling.

outOfRange Indicates whether the current input focus item contains a value that is
out of range. The dialog hook function sets this field to TRUE for an
out-of-range value. In this case, the dialog will not lose the input
focus unless it is forced to. (Some methods of changing the input
focus allow out-of-range focus-out errors to be ignored).

nextFocusItemIndex Contains the index of the next item to receive focus as a result of this
focus out message. A value of -1 means search for the next focusable
item in the direction indicated by the moveDirection field.
MicroStation MDL Programmer’s Reference Guide 17-47

Dialog Box Manager Hook Functions
DITEM_MESSAGE_KEYSTROKE message
DITEM_MESSAGE_KEYSTROKE message

The DITEM_MESSAGE_KEYSTROKE message is sent when a key is pressed while the item
has the input focus. Additional information is included in the keystroke member of the
DialogItemMessage union u as follows:

struct
{

boolean hookHandled; /* <= only for hooks,TRUE = handled */
int moveDirection; /* <= -1 or 1 indicate next field */
int keyStroke; /* <=> */

stringValueP Contains the item’s current string value. This field will be non-NULL
only for items that store their internal values as strings. Currently,
only text items do this. The string value can be checked against the
strings pointed to by minStrP and maxStrP to see if it is in range.

formatStrP Points to the formatToInternal string that is part of an item’s
resource specification. This pointer, if non-NULL, can be used with the
sscanf function to convert stringValueP, minStrP and maxStrP to
integers or doubles to range-check stringValueP. This field is used
only if the item that is losing the focus stores its internal value as a
string. Currently, only text items do this.

minStrP Points to a minimum string that is a part of an item’s resource
specification. (Only text items currently have this field).

maxStrP Points to a maximum string that is a part of an item’s resource
specification. (Only text items currently have this field).

focusOutType Specifies the reason the focus changed from the previous item to the
one about to get focus. Possible values for this field are listed at the
top of this section and are defined in msdefs.h.

moveDirection Specifies the direction in which focus is shifting to the next item
receiving focus. A value of 1 means forward and -1 means backward.

nextFocusRiP Pointer to the Raw Item Header of the item to receive focus as a
result of this focus out event.

Field Description
17-48 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DITEM_MESSAGE_KEYSTROKE message
int rawKeyStroke; /* <=> */
int qualifierMask; /* => */
Inputq_element *iqelP; /* => */
int cursorIndex; /* => hook only, charIndex

 curs before */
boolean isAccelerator; /* <=> TRUE = accelerator keystroke */
ULong commandNumber; /* <=> Command num for accelerator */
char *unparsedP; /* <=> Parm string for cmd function */
char *commandTaskIdP; /* <=> Task containing cmd function */

} keystroke; /* also for POSTKEYSTROKE msgs */

Field Description

hookHandled Indicates whether the dialog box manager should continue default
handling for the keystroke. The item hook function should set this field
to TRUE to stop the default handling.

moveDirection Indicates that the key that was pressed caused the input focus to be
moved if hookHandled is TRUE. 1 means that the input focus should be
moved forward (later in the dialog item list) to an item that can accept
the focus. -1 means that the input focus should be moved backward
(earlier in the dialog item list) to an item that can accept the focus.

keystroke Contains the keystroke that was just pressed. If the item hook function
changes this field, the new value of keystroke will be the value used in
the item handler’s default keystroke processing (unless hookHandled is
set to TRUE).

qualifierMask Contains the state of the qualifier keys when the keystroke event
occurred. The possible qualifier keys are SHIFTKEY, CTRLKEY and
ALTKEY. These bitmasks are defined in keys.h.

iqelP Contains a pointer to the raw input queue element for the keystroke
event. See msinputq.h for the declaration of the InputQ_element
structure.

cursorIndex Contains the current cursor position. 0 means that the cursor is in front
of the first character.

isAccelerator A value of TRUE for this field indicates that the current keystroke is being
interpreted as a command accelerator. If this field is TRUE, then the three
fields describing the command information contain valid data. The hook
function may change the value of this field to perform special case
handling of keystroke accelerators.

commandNumber Contains the command number which will be queued to MicroStation
after all keystroke processing is completed. This field is only valid of
isAccelerator is TRUE.
MicroStation MDL Programmer’s Reference Guide 17-49

Dialog Box Manager Hook Functions
DITEM_MESSAGE_POSTKEYSTROKE message
DITEM_MESSAGE_POSTKEYSTROKE message

The DITEM_MESSAGE_POSTKEYSTROKE message is sent after the item handler’s default
keystroke handling processes a key. Additional information is included in the
keystroke member of the DialogItemMessage union u. See the discussion of the
DITEM_MESSAGE_KEYSTROKE message for more information.

Generic item hook function messages
Generic item hook function messages are only sent to item hook functions attached to
generic items. See“Generic item functions” on page 16-92 for more information on
generic items.

DITEM_MESSAGE_SETLABEL message

The DITEM_MESSAGE_SETLABEL message is sent when the item’s label needs to be
changed. If the item doesn’t have a visible label, this message can be ignored.
Additional information is included in the setLabel member of the DialogItemMessage
union u as follows:

struct
{

char *newLabelP; /* => */
} setLabel;

DITEM_MESSAGE_GETVALUE message

The DITEM_MESSAGE_GETVALUE message is sent when the item’s internal value is
needed. If the item does not have an internal value, this message can be ignored.
Additional information is included in the value member of the DialogItemMessage
union u. The interpretation of all fields in the value member is the same as the
interpretation of fields for the DITEM_MESSAGE_GETSTATE message except that instead of
returning the item’s state, the item hook function returns the item’s internal value.

unparsedP Contains a pointer to the unparsed character string which will be passed
to the command function when the command is executed. This field is
only valid of isAccelerator is TRUE.

commandTaskIdP Contains a pointer to the task ID of the application which implements
the command indicated by the commandNumber field. This field is only
valid of isAccelerator is TRUE.

Field Description

newLabelP Points to the string that should be used as the item’s new label.

Field Description
17-50 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DITEM_MESSAGE_SETVALUE message
DITEM_MESSAGE_SETVALUE message

The DITEM_MESSAGE_SETVALUE message is sent when the item’s internal value will be
set. If the item does not have an internal value, this message can be ignored.
Additional information is included in the value member of the DialogItemMessage
union u. The interpretation of all fields in the value member is the same as the
interpretation of the DITEM_MESSAGE_SETSTATE message except that instead of setting
the item’s state, the item hook function sets the item’s internal value.

 DITEM_MESSAGE_DRAW message

The DITEM_MESSAGE_DRAW message is sent when the item should draw itself. Additional
information is included in the draw member of the DialogItemMessage union u as
follows:

struct
{

boolean eraseFirst; /* => erase before drawing */
int nRects; /* => # of update rects */
Rectangle *rectList; /* => update rects (local coords) */

} draw;

DITEM_MESSAGE_HIGHLIGHT message

The DITEM_MESSAGE_HIGHLIGHT message is sent when the item needs to change its
highlight state. This message is sent only if a motion function was not specified in
response to a mouse down event. While the user keeps the mouse down, a highlight-
on message will be sent when the cursor moves into the item’s mouse-sensitive area,
and a highlight-off message will be sent when it moves out. Additional information is
included in the highlight member of the DialogItemMessage union u as follows:

struct
{

boolean highlightOn;
} highlight;

Field Description

eraseFirst Contains TRUE if the item should be erased first before it is drawn. Use
the item’s DialogItem rect field to determine where to erase.

nRects Contains the number of rectangles in the next field.

rectList Contains an array of rectangles. To optimize drawing (rarely necessary)
draw only the item’s parts that intersect with a rectangle in this array.
MicroStation MDL Programmer’s Reference Guide 17-51

Dialog Box Manager Hook Functions
DITEM_MESSAGE_MOVE message
DITEM_MESSAGE_MOVE message

The DITEM_MESSAGE_MOVE message is sent when the item needs to be moved.
Additional information is included in the move member of the DialogItemMessage
union u as follows:

struct
{

Point2d newPt; /* => new origin of rawItemHdr.itemRect */
boolean redraw; /* => redraw at new position? */

} move;

DITEM_MESSAGE_SETEXTENT message

The DITEM_MESSAGE_SETEXTENT message is sent when the item size needs to be
changed. Additional information is included in the setExtent member of the
DialogItemMessage union u as follows:

struct
{

/* used as if resource extent was respecified (except in pixels) */
Sextent sextent; /* => */
boolean redraw; /* => redraw at new position? */

} setExtent;

Field Description

highlightOn Indicates whether the item should be drawn in its highlighted state. If
so, this field is TRUE. Otherwise, the item should be drawn in its
unhighlighted state.

Field Description

newPt Contains the point where the item’s RawItemHdr itemRect.origin
should be moved to.

redraw Indicates whether the item should be erased before it is moved and then
drawn in its new location. If so, this field is TRUE.

Field Description

sextent Contains the item’s new extent (in pixels).

redraw Indicates whether the item should be erased and then drawn in its new
size and at its possibly new location. If so, this field is TRUE.
17-52 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DITEM_MESSAGE_FONTCHANGED message
DITEM_MESSAGE_FONTCHANGED message

The DITEM_MESSAGE_FONTCHANGED message is sent when the dialog box is moved to a
screen that uses a different font size than the screen it was previously on. By default,
the dialog box manager will scale the size of each item. If necessary, an item hook
function can perform a different resizing operation on the item in response to this
message.

Additional information is included in the fontChanged member of the
DialogItemMessage union u as follows:

struct
{

boolean hookHandled; /* <= TRUE if handled */
int newFontHeight; /* => new font's height */
int oldFontHeight; /* => old font's height */

} fontChanged; /* because dialog now on new screen */

DITEM_MESSAGE_SETENABLEDSTATE message

The DITEM_MESSAGE_SETENABLEDSTATE message is sent when the item’s enabled state is
changed. Additional information is included in the setEnabledState member of the
DialogItemMessage union u as follows:

struct
{

boolean enabled; /* => TRUE = enabled */
} setEnabledState;

Field Description

hookHandled Indicates whether the dialog box manager should continue default
handling for the font changed message. The item hook function should
set this field to TRUE to stop the default handling.

newFontHeight Specifies the font height that should be used in calculating the new item
size.

oldFontHeight Specifies the height of the dialog box’s old font.

Field Description

enabled Indicates whether the item has been enabled. If so, this field is TRUE.
MicroStation MDL Programmer’s Reference Guide 17-53

Dialog Box Manager Hook Functions
DITEM_MESSAGE_ACTIVATE message
DITEM_MESSAGE_ACTIVATE message

The DITEM_MESSAGE_ACTIVATE message is sent to the dialog item hook function when
one of the following occurs:

• The user uses a keyboard accelerator key to activate a specific menu
bar menu item.

• The user uses a keyboard mnemonic to activate a specific dialog item.

• An application calls the mdlDialog_pushButtonActivate function to
activate a push button item.

If the dialog box containing the item being activated has a hook function, the
DIALOG_MESSAGE_ACTIVATE message is sent after this message has been sent to the
dialog item.

Additional information is included in the activate member of the DialogItemMessage
union u as follows:

struct
{

ULong couldSetState; /* <= if not modal, could set state */
int keystroke; /* => virtual keystroke */
int rawKeystroke; /* => raw keystroke */
int qualifierMask; /* => modified key status */
boolean isAccelerator; /* => key is accelerator */
ULong commandNumber; /* => accelerator key command */
char *unparsedP; /* => accelerator key cmd parms */
char *commandTaskIdP; /*=> accelerator key cmd task id */

} activate;

Field Description

couldSetState This field is unused in this message.

keystroke Contains the platform independent (virtual) keystroke that was just
pressed.

rawKeystroke Contains the raw, native keystroke just pressed.

qualifierMask Contains the state of the qualifier keys at the time of the keystroke
event. The possible qualifier keys are SHIFTKEY, CTRLKEY and
ALTKEY. These bitmasks are defined in keys.h.

isAccelerator A value of TRUE for this field indicates that the current keystroke is being
interpreted as a command accelerator. If this field is TRUE, then the three
fields describing the command information contain valid data.

commandNumber Contains the command number which will be queued to MicroStation
after all keystroke processing is completed. This field is only valid of
isAccelerator is TRUE.
17-54 MicroStation MDL Programmer’s Reference Guide

Dialog Box Manager Hook Functions
DITEM_MESSAGE_ACTIVATE message
unparsedP Contains a pointer to the unparsed character string which will be passed
to the command function when the command is executed. This field is
only valid of isAccelerator is TRUE.

commandTaskIdP Contains a pointer to the task ID of the application which implements
the command indicated by the commandNumber field. This field is only
valid of isAccelerator is TRUE.

Field Description
MicroStation MDL Programmer’s Reference Guide 17-55

Dialog Box Manager Hook Functions
DITEM_MESSAGE_ACTIVATE message
17-56 MicroStation MDL Programmer’s Reference Guide

18 A Complete Example
This chapter describes an MDL application called basic.ma that opens
a simple, modeless dialog box. While the application is basic, as the
name implies, it does illustrate all of the steps necessary to create an
MDL application that uses the dialog box manager.
MDL Applications
It is assumed that the reader is familiar with the contents of the preceding three
chapters. However, this section can also be read to capture the flavor of MDL dialog
box applications.

✍ The basic MDL application is also featured in “Building Applications” on
page 7-1, which you may want to review concurrently with this one.

All the source files needed to create the application are here along with detailed
explanations. These files are also found in the mdl\examples\basic directory. To run
this example, first make the basic application by going to the mdl\examples\basic
directory and entering: BMAKE BASIC.

To load the application, start MicroStation and select the “MDL Applications” menu
item from MicroStation’s “User” pull-down menu. Then select the basic application
using the dialog box that appears. If the basic application does not appear in the list of
“Available Applications” make sure that the MS_MDL MicroStation environment includes
the \ustation\mdlapps directory.

The basic.ma application
When the basic.ma application is loaded, a modeless dialog box entitled “Basic Dialog
Box” appears on the screen. This modeless dialog box contains three items: a text item,
an option button item and a push button item.

Both the text and option button item controls let the user view the same application
variable parameter1. Using a synonym resource, whenever either of these items
changes the variable parameter1, the other item’s appearance also changes to match
parameter1’s new value.
MicroStation MDL Programmer’s Reference Guide 18-1

A Complete Example
The basic.ma application
When the user clicks on the push button item labeled “Open Modal,” a modal dialog
box is displayed. Its title is “Basic Modal Dialog Box”. As long as this modal dialog box
is present on the screen, the user cannot interact with any other window’s contents.

The “Basic Modal Dialog Box” also contains three items: a toggle button, a push button
labeled “OK,” and a push button labeled “Cancel.” This modal dialog box lets the user
increment the application variable parameter1.

If the user clicks the OK button after turning the toggle button “on,” the modal dialog
box will be dismissed and parameter1 will be incremented. The appearance of the text
and option button items in the “Basic Dialog Box” is also changed to reflect the new
value of parameter1. If the toggle button is “off” when the OK button is clicked or the
Cancel button is clicked, the modal dialog box is simply dismissed and parameter1
remains unchanged.

When the user closes the initial “Basic Dialog Box,” the basic.ma application is
automatically unloaded.

The basic application consists of the following files:

file description

basic.h Defines the constants and data structures used by the application.

basic.r Contains the definition of the application’s resources.

basic.mc Contains the application’s source code.

basiccmd.r Contains the definition of the application’s command table
resources.

basiccmd.h Contains the application’s command numbers (generated by rcomp
when basiccmd.r is compiled).

basictyp.mt Used to generate type declaration resources for the application.

basicmsg.r Contains language-specific messages (located in the english
subdirectory).

basictxt.h Contains language-specific text strings (located in the english
subdirectory).

basic.mke Contains information used by the bmake utility to create the
basic.ma application from the above files.

basicrsc.mki Contains rules and dependencies used by basic.mke.
18-2 MicroStation MDL Programmer’s Reference Guide

A Complete Example
The basic.ma application
The application header file: basic.h
23 /*---+
24 | |
25 | Function - |
26 | |
27 | Constants & types used in basic dialog example |
28 | |
29 +---*/
30 #ifndef __basicH__
31 #define __basicH__

32 /*---+
33 | |
34 | Resource ID's |
35 | |
36 +---*/
37 #define DIALOGID_Basic 1 /* dialog id for Basic Dialog */
38 #define DIALOGID_BasicModal 2 /* dialog id for Basic Modal Dialog */
39 #define OPTIONBUTTONID_Basic 1/* id for parameter 1 option button */
40 #define PUSHBUTTONID_OModal 1 /* id for "Open Modal" push button */
41 #define TEXTID_Basic 1 /* id for "parameter 1" text item */
42 #define TOGGLEID_Basic 1 /* id for "Inc parameter 1?" toggle */
43 #define SYNONYMID_Basic 1 /* id for synonym resource */
44 #define MESSAGELISTID_BasicErrors 1/* id for error message list */
45 /*---+
46 | |
47 | Error Message ID Definitions |
48 | |
49 +---*/
50 #define ERRID_CommandTable 1
51 #define ERRID_BasicDialog 2
52 #define ERRID_ModalDialog 3

53 /*---+
54 | |
55 | Hook Function ID's |
56 | |
57 +---*/
58 #define HOOKITEMID_ToggleButton_Basic 1 /* toggle for item hook id */
59 #define HOOKDIALOGID_Basic 2 /* id for dialog hook func */
60 /*---+
61 | |
62 | Typedefs |
63 | |
64 +---*/
65 typedef struct basicglobals
66 {
MicroStation MDL Programmer’s Reference Guide 18-3

A Complete Example
The basic.ma application
67 int parameter1; /* used by text & option button item */
68 int parameter2; /* used by toggle button item */
69 } BasicGlobals;
70 #endif

The header file basic.h is included in basic.r, basic.mc and basictyp.mt.

Lines 37-44 define symbolic constants that are used as resource ID numbers.
Remember that each instance of a particular resource type needs to have its own
unique, positive resource ID number. That is why DIALOGID_BasicModal is defined to
be 2 and not 1, which is already assigned to DIALOGID_Basic. Both of these resource
IDs are used to create a DialogBoxRsc resource (with a resource type of
RTYPE_DialogBox) and therefore must be different numbers. As a further illustration, if
another DItem_OptionButtonRsc resource was needed for this application its resource
ID could not be 1. That number is already used by OPTIONBUTTONID_Basic.

See the “Resources” section in the “MicroStation Dialog Box Manager Overview”
chapter for more information on creating resource IDs.

Lines 50-52 define symbolic constants which are used to reference entries in the
Message List resource defined by MESSAGELISTID_BasicErrors.

Lines 58-59 define symbolic constants used as hook function ID numbers. Remember
that each hook function in an application requires its own unique, positive ID number.
This is true whether the hook function is a dialog hook function or a dialog item hook
function. Dialog hook functions and item hook functions share the same number
space. This is why HOOKDIALOGID_Basic is 2 and not 1, which is already used by
HOOKITEMID_ToggleButton_Basic.

See the “Hook function IDs” section in the “MicroStation Dialog Box Manager
Overview” chapter for more information on creating hook function IDs.

Finally, lines 65-69 declare the structure BasicGlobals. The dialog items in the basic
application’s dialog boxes control members of a variable of this type (see lines 104, 115
and 143 in basic.r).

The BasicGlobals structure is created to hold the variables that these dialog box items
modify. This was done because any application variable that a dialog box item refers to
in a C expression string resource must be published in a symbol set for use by the C
expression handling functions. When the variables are part of a structure, only one
mdlDialog_publishComplexVariable or mdlDialog_publishComplexPtr function call
must be done for that structure. Otherwise, an mdlDialog_publishÉ function call is
required for each referenced variable.

See “Referencing Application Variables from Resource Files” on page 15-10 for more
information on variable references within C expression strings.
18-4 MicroStation MDL Programmer’s Reference Guide

A Complete Example
The resource file: basic.r
The resource file: basic.r
23 /*---+
24 | |
25 | Function - |
26 | |
27 | Basic Dialog Example Resources |
28 | |
29 +---*/
30 /*---+
31 | |
32 | Include Files |
33 | |
34 +---*/
35 #include <dlogbox.h>/* dlog box manager resource consts & structs */
36 #include <dlogids.h>/* MicroStation resource IDs */
37 #include "basic.h" /* basic dialog box example consts & structs */
38 #include "basiccmd.h" /* basic dialog box command numbers */
39 #include "basictxt.h" /* basic dialog box static text defines */
40 /*---+
41 | |
42 | Basic Dialog Box |
43 | |
44 +---*/
45 #define X1 (14*XC)/* text & option button x position */
46 #define X2 (7*XC)/* push button x position */
47 #define XW (9*XC)/* text & option button width */
48 #define BTN_WIDTH (12*XC)/* push button width */

49 DialogBoxRsc DIALOGID_Basic=
50 {
51 DIALOGATTR_DEFAULT | DIALOGATTR_SINKABLE,
52 25*XC, 7*YC,
53 NOHELP, MHELP, HOOKDIALOGID_Basic, NOPARENTID,
54 TXT_BasicDialogBox,
55 {
56 {{X1,GENY(1),XW,0}, Text, TEXTID_Basic, ON, 0, "", ""},
57 {{X1,GENY(2),XW,0}, OptionButton,OPTIONBUTTONID_Basic, ON, 0,"",""},
58 {{X2,GENY(4),BTN_WIDTH,0},PushButton,PUSHBUTTONID_OModal,ON,0,"",""}
59 }
60 };
61 #undef X1 /* undef symbols so they can be reused */
62 #undef X2
63 #undef XW
64 #undef BTN_WIDTH

65 /*---+
66 | |
MicroStation MDL Programmer’s Reference Guide 18-5

A Complete Example
The resource file: basic.r
67 | Modal Sub-Dialog Box |
68 | (opened when PUSHBUTTONID_OModal is activated) |
69 | |
70 +---*/
71 #define X1 (1*XC) /* toggle button x position */
72 #define X2 (3*XC) /* OK button x position */
73 #define X3 (14*XC) /* Cancel button x position */

74 DialogBoxRsc DIALOGID_BasicModal=
75 {
76 DIALOGATTR_DEFAULT | DIALOGATTR_MODAL,
77 25*XC, 6*YC,
78 NOHELP, MHELP, HOOKDIALOGID_Basic, NOPARENTID,
79 TXT_BasicModalDialogBox,
80 {
81 {{X1,GENY(1),0,0}, ToggleButton, TOGGLEID_Basic, ON, 0, "", ""},
82{{X2,GENY(3),BUTTON_STDWIDTH,0},PushButton,PUSHBUTTONID_OK,ON,0,"",""
},
83 {{X3,GENY(3),BUTTON_STDWIDTH,0},PushButton,PUSHBUTTONID_Cancel,ON,
0,"",""},
84 }
85 };
86 #undef X1 /* undef symbols so they can be reused */
87 #undef X2
88 #undef X3

89 /*---+
90 | |
91 | Item Resource Specifications |
92 | |
93 +---*/
94 /*---+
95 | |
96 | Text Item Resources |
97 | |
98 +---*/
99 DItem_TextRsc TEXTID_Basic=
100{
101 NOCMD, LCMD, SYNONYMID_Basic, NOHELP, MHELP, NOHOOK, NOARG,
102 4, "%ld", "%ld", "1", "3", NOMASK, NOCONCAT,
103 TXT_Parameter1,
104 "basicGlobals.parameter1"
105};

106/*---+
107| |
108| Option Button Item Resources |
109| |
110+---*/
18-6 MicroStation MDL Programmer’s Reference Guide

A Complete Example
The resource file: basic.r
111DItem_OptionButtonRsc OPTIONBUTTONID_Basic=
112{
113 SYNONYMID_Basic, NOHELP, MHELP, NOHOOK, NOARG,
114 TXT_Parameter1,
115 "basicGlobals.parameter1",
116 {
117 {NOTYPE, NOICON, NOCMD, LCMD, 1, NOMASK, ON, TXT_Value1},
118 {NOTYPE, NOICON, NOCMD, LCMD, 2, NOMASK, ON, TXT_Value2},
119 {NOTYPE, NOICON, NOCMD, LCMD, 3, NOMASK, ON, TXT_Value3},
120 }
121};

122/*---+
123| |
124| PushButton Item Resources |
125| |
126+---*/
127DItem_PushButtonRsc PUSHBUTTONID_OModal=
128{
129 NOT_DEFAULT_BUTTON, NOHELP, MHELP, NOHOOK, 0,
130 CMD_OPENMODAL, LCMD, "",
131 TXT_OpenModal
132};

133/*---+
134| |
135| Toggle Button Item Resources |
136| |
137+---*/
138DItem_ToggleButtonRsc TOGGLEID_Basic=
139{
140 NOCMD, LCMD, NOSYNONYM, NOHELP, MHELP,
141 HOOKITEMID_ToggleButton_Basic, NOARG, NOMASK, NOINVERT,
142 TXT_IncrementParameter1,
143 "basicGlobals.parameter2"
144};

145/*---+
146| |
147| Synonym List Resources |
148| |
149+---*/
150DItem_SynonymsRsc SYNONYMID_Basic=
151{
152 {
153 {Text, TEXTID_Basic},
154 {OptionButton,OPTIONBUTTONID_Basic},
155 }
156};
MicroStation MDL Programmer’s Reference Guide 18-7

A Complete Example
The resource file: basic.r
The resource source file basic.r contains all of the dialog and item resources for the
basic application.

The header file dlogbox.h is included on line 35. dlogbox.h contains all of the
MicroStation dialog box manager resource related constants and structures. It must be
included in any resource source file that defines dialog box manager related resources.

The header file dlogids.h is included on line 36. dlogids.h contains the resource IDs of
all of the dialog box manager related resources present in the MicroStation resource
file. This file is needed because the “Basic Modal Dialog Box” uses the standard
MicroStation “OK” and “Cancel” push button item resources.

The header file basic.h is included on line 37; it contains the application’s resource ID
and hook function ID numbers.

The header file basiccmd.h is included on line 38; it contains the command number
for the basic application’s Openmodal command. This is used in the definition of the
push button whose resource ID is PUSHBUTTONID_OModal (see line 130).

The header file basictxt.h is included on line 39; it contains the static text label
definitions referenced by the dialog resources contained in the basic application dialog
boxes as shown in lines 54, 79, 103, 114, 131 and 142.

The modeless dialog box entitled “Basic Dialog Box” is defined on lines 45-64. This
dialog box is 7 characters tall and approximately 25 characters wide. It will have a
“sink” icon on the right side of its title bar. It has a dialog hook function, which in this
case is the basic_dialogHook function (see line 71 in basic.mc). The dialog box has
three entries in its dialog item list: a text item, an option button item, and a push
button. The x position, width of the text and option button items are the same and are
defined by the symbolic constant X1 and XW respectively. This ensures that if it is
necessary to change their X position or size, their horizontal relationship will remain
correct. The GENY macro is used to position the text item on “row” 1, and the option
button on “row” 2. Since push buttons are taller than the other items, it is placed on
“row” 4 to allow more space between it and the option button item. The height of all
three items is specified to be 0. This indicates that the associated item handlers should
calculate an appropriate default height.

The modal dialog box entitled, “Basic Modal Dialog Box” is defined on lines 71-88.
This dialog box is 6 characters tall and approximately 25 characters wide. Since it is
modal, the DIALOGATTR_MODAL bit is set in its attributes member. It has a dialog hook
function, which is the same basic_dialogHook function that the “Basic Dialog Box”
uses (see line 71 in basic.mc). This hook function looks at the dialogId member of
any dialog messages received to determine which dialog box the message is for. The
dialog box has three entries in its dialog box item list: a toggle button item, and two
push button items. Note that the resources for the two push button items are not
defined in basic.r; instead, these standard resources will be loaded from MicroStation’s
18-8 MicroStation MDL Programmer’s Reference Guide

A Complete Example
The resource file: basic.r
resource file. This ensures that the “OK” and “Cancel” modal dialog box behavior is
correctly implemented.

See “DialogBoxRsc Structure” on page 16-2 and + for more information on creating
dialog box resources.

The next section in basic.r defines the actual dialog item resources that were
referenced in the above dialog boxes. See the “Standard Dialog Box Items” chapter for
more information on creating dialog item resources.

Lines 99-105 define the text item referred to in line 56. The text item can contain up to
4 characters, is displayed as an integer, and must be between 1 and 3. It’s label is
“Parameter 1”: and it controls the basicGlobals.parameter1 application variable.

This text item has a synonym resource associated with it whose ID is
SYNONYMID_Basic. Therefore, whenever the user modifies the text item to change
basicGlobals.parameter1, the appearance of all of the other items that are listed in
the SYNONYMID_Basic synonym resource will be forced to match the state of their
application variables. In this example, the appearance of the OPTIONBUTTONID_Basic
option button item will change to reflect the new value of basicGlobals.parameter1.

Lines 111-121 define the option button item referred to in line 57. Its hook function is
the basic_dummyItemHook function. It displays the text strings “Value 1,” “Value 2” or
”Value 3” depending on the value of the basicGlobals.parameter1 application
variable. The option button item also has the SYNONYMID_Basic synonym resource
associated with it. This means that when the user modifies basicGlobals.parameter1
with the option button item, the appearance of the TEXTID_Basic text item will also be
changed.

Lines 127-132 define the “Open Modal” push button item referred to in line 58. Its
hook function is the basic_dummyItemHook function. The basic application’s
Openmodal command will be placed in the input queue when the user clicks on this
button.

Lines 138-144 define the toggle button item referred to in line 81. Its hook function is
the basic_toggleButtonHook function (see line 50 in basic.mc). It controls the
basicGlobals.parameter2 application variable.

Lines 150-156 define the synonym resource that is associated with both the
TEXTID_Basic text item and the OPTIONBUTTONID_Basic option button item. See the
“Synonym resources” section in the “MicroStation Dialog Box Manager Overview”
chapter for more information on synonym resources.
MicroStation MDL Programmer’s Reference Guide 18-9

A Complete Example
The source code file: basic.mc
The source code file: basic.mc
23 /*---+
24 | |
25 | Function - |
26 | |
27 | MDL example to show creation & use of basic dialog box |
28 | |
29 | - |
30 | |
31 | Public Routine Summary - |
32 | |
33 | main - Main entry point and initialization logic |
34 | basic_dialogHook - Dialog box hook function |
35 | basic_toggleButtonHook - Toggle button item hook function |
36 | basic_openModal - Application command function to open modal|
37 | dialog box |
38 | basic_errorPrint - Function to display an error message in |
39 | messages dialog box |
40 | |
41 +---*/
42 /*---+
43 | |
44 | Include Files |
45 | |
46 +---*/
47 #include <mdl.h> /* MDL Library funcs structures & constants */
48 #include <dlogitem.h> /* Dialog Box Manager structures & constants */
49 #include <cexpr.h> /* C Expression structures & constants */
50 #include <cmdlist.h> /* MicroStation command numbers */
51 #include <dlogman.fdf> /* dialog box manager function prototypes */
52 #include "basic.h"/* basic dialog box example constants & structs */
53 #include "basiccmd.h" /* basic dialog box command nums */

54 /*---+
55 | |
56 | Private Global variables |
57 | |
58 +---*/
59 /* The following variable is referenced in C expression strings used
60 by the text, option button, and toggle button items defined in
61 basic.r. The initial external state of the text item and the option
62 button (they are both looking at the same application variable) is 1.
63 The initial external state of the toggle button in the modal dialog
64 box is 0 (the toggle is "out" or OFF) */

65 Private BasicGlobals basicGlobals={1, 0};
66 void basic_toggleButtonHook();
18-10 MicroStation MDL Programmer’s Reference Guide

A Complete Example
The source code file: basic.mc
67 void basic_dialogHook();
68 Private DialogHookInfo uHooks[]=
69 {
70 {HOOKITEMID_ToggleButton_Basic, basic_toggleButtonHook},
71 {HOOKDIALOGID_Basic, basic_dialogHook},
72 };

73 /*---+
74 | |
75 | name main |
76 | |
77 | author BSI 12/90 |
78 | |
79 +---*/
80 Public main
81 (
82 int argc, /* => number of args in next array */
83 char *argv[] /* => array of cmd line arguments */
84)
85 {
86 char *setP; /* a ptr to a "C expression symbol set" */
87 RscFileHandle rscFileH;/* a resource file handle */
88 DialogBox *dbP; /* a ptr to a dialog box */

89 /* open the resource file that we came out of */
90 mdlResource_openFile (&rscFileH, NULL, 0);

91 /* load the command table */
92 if (mdlParse_loadCommandTable(NULL) == NULL)
93 basic_errorPrint(ERRID_CommandTable);

94 /* set up variables to be evaluated w/i C expression strings */
95 setP=mdlCExpression_initializeSet(VISIBILITY_DIALOG_BOX,0,FALSE);
96 mdlDialog_publishComplexVariable(setP, "basicglobals",
97 "basicGlobals", &basicGlobals);

98 /* publish our hook functions */
99 mdlDialog_hookPublish(sizeof(uHooks)/sizeof(DialogHookInfo),uHooks);
100 /* open the "Basic" dialog box */
101 if ((dbP = mdlDialog_open(NULL, DIALOGID_Basic)) == NULL)
102 basic_errorPrint(ERRID_BasicDialog);
103 }

104/*--+
105| |
106| Hook Functions |
107| |
108+---*/
109/*--+
110| |
MicroStation MDL Programmer’s Reference Guide 18-11

A Complete Example
The source code file: basic.mc
111| name basic_dialogHook |
112| |
113| author BSI 12/90 |
114| |
115+---*/
116Private void basic_dialogHook
117(
118DialogMessage *dmP /* => a ptr to a dialog message */
119)
120{
121 /* ignore any messages being sent to modal dialog hook */
122 if (dmP->dialogId != DIALOGID_Basic)
123 return;
124 dmP->msgUnderstood = TRUE;

125 switch (dmP->messageType)
126 {
127 case DIALOG_MESSAGE_DESTROY:
128 {
129 /* unload this mdl task when Basic Dialog is closed */
130 mdlDialog_cmdNumberQueue(FALSE, CMD_MDL_UNLOAD,
131 mdlSystem_getCurrTaskID(), TRUE);
132 /* mdlSystem_getCurrTaskID was erroneously omitted
133 from the MDL documentation. It returns a character
134 pointer pointing to the current task's task ID. */
135 break;
136 };
137 default:
138 dmP->msgUnderstood = FALSE;
139 break;
140 }
141}

142/*---+
143| |
144| name basic_toggleButtonHook |
145| |
146| author BSI 12/90 |
147| |
148+---*/
149Private void basic_toggleButtonHook
150(
151DialogItemMessage *dimP /* => a ptr to a dialog item message */
152)
153{
154 dimP->msgUnderstood = TRUE;
155 switch (dimP->messageType)
156 {
18-12 MicroStation MDL Programmer’s Reference Guide

A Complete Example
The source code file: basic.mc
157 case DITEM_MESSAGE_CREATE:
158 {
159 basicGlobals.parameter2 = 0;
160 break;
161 }
162 default:
163 dimP->msgUnderstood = FALSE;
164 break;
165 }
166}

167/*---+
168| |
169| Command Handling routines |
170| |
171+---*/
172/*---+
173| |
174| name basic_openModal |
175| |
176| author BSI 12/90 |
177| |
178+---*/
179Public cmdName void basic_openModal
180(
181char *unparsedP /* => unparsed part of command */
182)
183cmdNumber CMD_OPENMODAL
184{
185 int lastAction;

186 /* open child modal dialog box */
187 if (mdlDialog_openModal(&lastAction, NULL, DIALOGID_BasicModal))
188 {
189 basic_errorPrint (ERRID_ModalDialog);
190 return;
191 }

192 /* if the user clicked in OK push button, and the toggle button
193 is currently "in", then increment parameter1 and update the
194 appearance of both the text item and the option button item
195 in the Basic dialog box */

196 if (lastAction == ACTIONBUTTON_OK && basicGlobals.parameter2)
197 {
198 basicGlobals.parameter1++;
199 if (basicGlobals.parameter1 > 3)
200 basicGlobals.parameter1 = 1;
201 mdlDialog_synonymsSynch(NULL, SYNONYMID_Basic, NULL);
MicroStation MDL Programmer’s Reference Guide 18-13

A Complete Example
The source code file: basic.mc
202 }
203}

204/*---+
205| |
206| Utility routines |
207| |
208+---*/
209/*--+
210| |
211| name basic_errorPrint -- print an error message into Dialog |
212| Box Manager Messages dialog box |
213| |
214| author BSI 12/90 |
215| |
216+---*/
217Private void basic_errorPrint
218(
219int errorNumber /* => number of error to print */
220)
221{
222 char errorMsg[80];
223 if (mdlResource_loadFromStringList(errorMsg, NULL,
224 MESSAGELISTID_BasicErrors, errorNumber))
225 return; /* unable to find msg. w/ num. "errorNumber" */
226 mdlDialog_dmsgsPrint(errorMsg);
227}

The main function is defined on lines 80-103. It starts by opening the resource file from
which its application was loaded by calling mdlResource_openFile with NULL as its
second argument. In this case, the resource file basic.ma is opened in read-only mode.
This resource file needs to be opened before any resources that reside in it can be
accessed.

The mdlParse_loadCommandTable function call on line 92 makes the contents of the
command table present in basic.ma available as MicroStation key-ins. In this case, the
user can key in OPENMODAL to display the “Basic Modal Dialog Box”, instead of
clicking on the “Open Modal” push button.

The text, option button and toggle button item resources defined in basic.r refer to the
basicGlobals variable that is defined on line 65. Lines 96 and 97 publish this variable
and its structure declaration to the C expression handling functions. The dialog box
manager can then evaluate the strings in the item resources that refer to the
basicGlobals variable (see lines 104, 115 and 143 in basic.r). See “Referencing
application variables from resource files” in the “MicroStation Dialog Box Manager
Overview” chapter for more information.
18-14 MicroStation MDL Programmer’s Reference Guide

A Complete Example
The source code file: basic.mc
The DialogHookInfo array defined on lines 68-72 establishes the connection between
hook function ID numbers and MDL function addresses. The mdlDialog_hookPublish
function call on line 99 informs the dialog box manager of these connections.

Line 101 opens the Basic Dialog Box.

There are two hook functions used in this application: basic_dialogHook and
basic_toggleButtonHook.

The basic_dialogHook function is attached to the “Basic Dialog Box.” When it receives
the DIALOG_MESSAGE_DESTROY message for this dialog box, it forces the basic
application to be unloaded by queueing up the MicroStation MDL Unload command
(see line 130).

The basic_toggleButtonHook function is the item hook function that is attached to the
toggle button item in the “Basic Modal Dialog Box.” Every time that a modal dialog box
is opened, all of its items are sent DITEM_MESSAGE_CREATE messages. When the
basic_toggleButtonHook function receives this message, it sets the application
variable that the toggle button controls to 0, basicGlobals.parameter2 (see line 159).
This ensures that the toggle button will always be “off” when the “Basic Modal Dialog
Box” is opened. Note that this only works for the Create message - the
DITEM_MESSAGE_INIT message cannot be used. The Init message is sent after the toggle
button has already been initialized from the value of its underlying application
variable; setting basicGlobals.parameter2 to 0 at this time would thus be incorrect.

The dialog box manager can be told to print out information on all messages sent to
dialog boxes and dialog box items that have hook functions attached to them. The
basic_dummyItemHook function is attached to items that normally would not require an
item hook function so that the dialog box manager will print out information on the
messages sent to those items. The item hook function does not however perform any
useful action. The basic_dialogHook function is attached to the “Basic Modal Dialog
Box” so that the dialog box manager will print out messages sent to the dialog box.
The dialog hook function returns immediately if it receives any messages for that
dialog box.

To see the flow of the dialog and item messages that the dialog box manager sends,
enter the following commands before starting the basic application:

DMSG DIALOGDEBUG ON
DMSG ITEMDEBUG ON
DMSG VERBOSEDEBUG ON

See the “Tracking hook function messages” section in this chapter for more information
on debugging dialog box manager messages.

The basic_openModal function is called whenever the user keys in the basic
application’s Openmodal command or clicks the “Open Modal” push button.
MicroStation MDL Programmer’s Reference Guide 18-15

A Complete Example
The command table file: basiccmd.r
basic_openModal calls mdlDialog_openModal with a dialog box resource ID of
DIALOGID_BasicModal to open the “Basic Modal Dialog Box” (see line 187).
mdlDialog_openModal doesn’t return to its caller until the user has dismissed the open
modal dialog box. At that time, the lastAction variable is set to indicate which of the
two standard push buttons the user clicked on to dismiss the modal dialog box.

basic_openModal checks to make sure that the user has clicked the “OK” push button
and that the toggle button has been turned on. If both of these tests are passed, it
increments basicGlobals.parameter1 (setting it back to 1 if it becomes greater than
3). It then forces the text and option button items to be redrawn to reflect the new
value of basicGlobals.parameter1 by calling mdlDialog_synonymsSynch. This
function “synchronizes” all of the items listed in the specified synonym resource. In
other words, the items’ appearances are forced to match the value of their underlying
application variables.

The basic_errorPrint function loads a string from the MESSAGELISTID_BasicErrors
message list and displays it in the “Dialog Box Manager Messages” dialog box. The
errorNumber parameter indicates which string to display.

The command table file: basiccmd.r
 23/*--+
 24| |
 25| Function - |
 26| |
 27| "Basic Dialog Example" Command Table Resources |
 28| |
 29+--*/
 30/*--+
 31| |
 32| Include Files |
 33| |
 34+--*/
 35#include <rscdefs.h>
 36#include <cmdclass.h>

 37/*--+
 38| |
 39| Local Defines |
 40| |
 41+--*/
 42#define CT_NONE 0
 43#define CT_BASIC 1

 44/*--+
 45| |
18-16 MicroStation MDL Programmer’s Reference Guide

A Complete Example
The command number header file: basiccmd.h
 46| "Basic dialog example" commands |
 47| |
 48+--*/
 49Table CT_BASIC=
 50{
 51 {1, CT_NONE, INPUT, NONE, "OPENMODAL"},
 52};

The basiccmd.r file is a resource source file that contains the command tables for the
basic application. In this case there is only the main command table, which is
identified by the constant CT_BASIC. Within the main table there is only one command:
Openmodal. The Openmodal command has only one command word,
“OPENMODAL,” has no subtables or options, and is of the INPUT command class.

The MicroStation resource compiler, rcomp, is used to generate the header file
basiccmd.h and the resource file basiccmd.rsc from basiccmd.r (see lines 42 and 43
of the makefile basic.mke). The header file basiccmd.h, which is shown in the next
section, defines the command number CMD_OPENMODAL that is associated with the
Openmodal command.

The Openmodal command is automatically placed in MicroStation’s input queue when
user clicks on the push button labeled “Open Modal” (see line 130 of basic.r). When
MicroStation processes the Openmodal command it will call the basic_openModal
function to perform whatever actions are required (see lines 179-183 of basic.mc).

See “Compiling an Application Command Table” on page 7-11 for more information
about command tables.

The command number header file: basiccmd.h
1 #define CMD_OPENMODAL 0x01000000 /* INPUT */

The basiccmd.h file is created from the basiccmd.r file by the rcomp resource
compiler. It contains the command number associated with the basic application
command Openmodal.

The basiccmd.h header file is included in the files basic.r and basic.mc. The push
button resource defined in lines 127-132 of basic.r uses the symbolic constant
CMD_OPENMODAL to specify the command to place in the input queue when the user
clicks on the push button. The basic_openModal function definition on lines 179-183
in basic.mc uses CMD_OPENMODAL to indicate that basic_openModal should be called
whenever the Openmodal command is seen on the input queue.
MicroStation MDL Programmer’s Reference Guide 18-17

A Complete Example
The type definition file: basictyp.mt
The type definition file: basictyp.mt
 30 #include "basic.h"
 31 publishStructures(basicglobals);

This type of definition file is used to generate type declaration resources for the
BasicGlobals structure. This is necessary because a variable of type BasicGlobals is
referenced by C expression strings in the resource file basic.r (lines 104, 115 and 143).

The header file basic.h contains the declaration of the BasicGlobals structure and thus
must be included in basictyp.mt. The publishStructures statement indicates that
type declaration resources should be built for the structure whose tag is basicGlobals.
The rsctype utility program, under the direction of line 48 of the makefile basic.mke,
generates these resources and places them in the resource source file basictyp.r.

See “Generating Resource Files from C Type Definitions” on page 7-17 and
“Referencing Application Variables from Resource Files” on page 15-10 for more
information on type definition files.

The message file: basicmsg.r
The message file is located in the english directory, and contains the messages used by
the application. It is separated from the other files so that it can easily be customized
for any language the developer wishes.

 23/*--+
 24| |
 25| Function - |
 26| |
 27| Basic application message string resources |
 28| |
 29+--*/
 30#include <dlogbox.h>/* dlog box manager resource consts & structs */
 31#include <dlogids.h>/* MicroStation resource IDs */
 32#include "basic.h" /* basic dialog box example consts & structs */
 33/*--+
 34| |
 35| Error Messages |
 36| |
 37+--*/
 38MessageList MESSAGELISTID_BasicErrors=
18-18 MicroStation MDL Programmer’s Reference Guide

A Complete Example
The message file: basicmsg.r
 39{
 40 {
 41 {ERRID_CommandTable, "Unable to load command table."},
 42 {ERRID_BasicDialog, "Unable to open Basic dialog box."},
 43 {ERRID_ModalDialog, "Unable to open modal dialog box."},
 44 }
 45};

Lines 38-45 define a message list resource that contains error messages. If all of the text
strings of an application are defined in a resource file, those strings will be much easier
to translate into a different language. In fact, internationalization of this example can
be done without access to the basic.mc source file. The steps required to
internationalize basic are as follows:

1. Create the intermediate file basic.mi by combining the program file
(basic.mp) with the command table and type resources (basiccmd.rsc
and basictyp.rsc).

2. Give copies of basictxt.h and basicmsg.r to the translators for
internationalization. In addition, give them basic.r in case they need
to resize any dialog items to accomodate longer strings, and give them
the basic.mi file.

3. When the translators have finished their internationalization, they
compile basicmsg.r into basicmsg.rsc and then compile basic.r into
basic.rsc. Note that basic.r must be compiled whether it was changed
or not because it includes basictxt.h.

4. Once basic.rsc and basicmsg.rsc are ready, they can be combined
with basic.mi to create an internationalized version of basic.ma.
MicroStation MDL Programmer’s Reference Guide 18-19

A Complete Example
The application makefile: basic.mke
The text file: basictxt.h
The text file is located in the english directory, and contains the text strings referenced
by dialog boxes as labels for the dialog box, dialog items and items subentities. It is
separated from the other files so that it can easily be customized for any language the
developer wishes.

23 /*---+
24 | |
25 | Function - |
26 | |
27 | Static text defines for the basic application |
28 | dialog resources |
29 +---*/
30 #if !defined (__basictxtH__)
31 #define __basictxtH__
32 #define TXT_BasicDialogBox "Basic Dialog Box"
33 #define TXT_BasicModalDialogBox "Basic Modal Dialog Box"
34 #define TXT_Parameter1 "Parameter 1:"
35 #define TXT_OpenModal "Open Modal"
36 #define TXT_IncrementParameter1 "Increment parameter 1?"
37 #define TXT_Value1 "Value 1"
38 #define TXT_Value2 "Value 2"
39 #define TXT_Value3 "Value 3"
40 #endif

The application makefile: basic.mke
18 #---
19 # Define macros specific to this example
20 #---
21 BaseDir = $(MS)/mdl/examples/basic/
22 privateInc = $(BaseDir)

23 #---
24 # mdl.mki contains default rules for creating .rsc, .mo, etc files
25 # mdlexmpl.mki contains output directory overrides used by examples
26 #---
27 %include mdl.mki
28 %include mdlexmpl.mki

29 #---
30 # Define macros for files included in our link and resource merge
31 #---
32 basicObjs = \
33 $(o)basic.mo \
18-20 MicroStation MDL Programmer’s Reference Guide

A Complete Example
The application makefile: basic.mke
34 $(mdlLibs)ditemlib.ml
35 basicRscs = \
36 $(o)basic.mp \
37 $(o)basiccmd.rsc \
38 $(o)basictyp.rsc

39 #---
40 # Generate command table include & resource file using rcomp
41 #---
42 $(genSrc)basiccmd.h: $(BaseDir)basiccmd.r
43 $(o)basiccmd.rsc: $(BaseDir)basiccmd.r

44 #---
45 # Create & compile the application's type resource file using
46 # rsctype and rcomp
47 #---
48 $(o)basictyp.r : $(BaseDir)basictyp.mt $(BaseDir)basic.h
49 $(o)basictyp.rsc : $(o)basictyp.r $(BaseDir)basic.h

50 #---
51 # Compile the MDL source file using mcomp
52 #---
53 $(o)basic.mo : $(BaseDir)basic.mc $(BaseDir)basic.h

54 #---
55 # Link MDL program file from basic.mo & ditemlib.ml using rlink
56 #---
57 $(o)basic.mp : $(basicObjs)
58 $(msg)
59 > $(o)make.opt
60 $(linkOpts)
61 -a$@
62 $(basicObjs)
63 <
64 $(linkCmd) @$(o)make.opt
65 ~time

66 #---
67 # Merge the dialog resources & MDL program file using rlib
68 #---
69 $(reqdObjs)basic.mi : $(basicRscs)
70 $(msg)
71 > $(o)make.opt
72 -o$@
73 $(basicRscs)
74 <
75 $(rscLibCmd) @$(o)make.opt
76 ~time

77 # complete construction of the .ma by getting the last resource.
MicroStation MDL Programmer’s Reference Guide 18-21

A Complete Example
The application makefile: basic.mke
78 %include $(BaseDir)basicrsc.mki

The bmake utility uses the makefile basic.mke to automatically build the basic.ma
application file from its component parts.

Lines 21 and 22 define some macros to specify directories where various files can be
found or placed. In particular, BaseDir is set to be the directory where the source files
for the basic application will be found.

Line 27 includes the file mdl.mki (the .mki extension indicates that the file is a makefile
header file). mdl.mki is a handy header file that defines the most useful rules to use
when creating a file with one extension from a file of another extension. Most of the
dependency lines in basic.mke use the rules from mdl.mki and do not have to specify
any explicit build commands.

Line 28 includes the file mdlexmpl.mki (the .mki extension indicates that the file is a
makefile header file). mdlexmpl.mki is a header file that overrides various settings
made in mdl.mki and provides new rules and macros which are specific to the building
of the MDL example applications distruibuted with MicroStation. It is recommended
that new applications and/or projects have their own .mki file which defines
information specific to the building of that application - mdl.mki should never be
modified by the user.

Lines 32-34 define the macro basicObjs as the two files basic.mo and ditemlib.ml.
This macro is used when creating the MDL program file basic.mp.

Lines 35-38 define the macro basicRscs to be the files basic.mp, basiccmd.rsc and
basictyp.rsc. This macro is used when creating the MDL intermediate file basic.mi.

Line 42 specifies that the command number header file basiccmd.h should be
generated from the command table file basiccmd.r. A rule from mdl.mki indicates that
the rcomp resource compiler performs this operation.

Line 43 specifies that the resource file basiccmd.rsc should be generated from the
command table file basiccmd.r. A rule from mdl.mki indicates that the rcomp resource
compiler performs this operation.

Line 48 specifies that the resource source file basictyp.r should be generated from the
type definition file basictyp.mt. A rule from mdl.mki indicates that the rsctype utility
performs this operation.

Line 49 specifies that the resource file basictyp.rsc should be generated from the
resource source file basictyp.r, which was itself generated in line 41. A rule from
mdl.mki indicates that the rcomp resource compiler performs this operation.
18-22 MicroStation MDL Programmer’s Reference Guide

A Complete Example
The application makefile: basic.mke
Line 53 specifies that the MDL object file basic.mo should be generated from the MDL
source code file basic.mc. A rule from mdl.mki indicates that the mcomp MDL
compiler performs this operation.

In lines 57-65, the MDL linker mlink is used to link the MDL object file basic.mo with
the dialog box manager library file ditemlib.ml. The output of this linkage is the MDL
program file basic.mp. Lines 59-63 create the temporary response file make.opt that is
then read by the MDL linker on line 64. This avoids exceeding DOS command line
length limits. Notice that the basicObjs macro is used to specify both the dependency
list and the list of files that need to be linked.

In lines 69-76, the separate resource files basic.mp, basiccmd.rsc and basictyp.rsc are
combined by the rlib resource librarian into the intermediate file basic.mi. Lines 71-74
create the temporary response file make.opt that is then read by the resource librarian
on line 75. This also avoids exceeding the limits on the length of a DOS command line.
Notice that the basicRscs macro specifies both the dependency list and the list of files
that need to be merged.

At this point, all the language generic components of the basic application have been
built.

Finally, in line 78, the basicrsc.mki file is included (the .mki extension indicates that
the file is a makefile header file). basicrsc.mki is a header file which defines the final
steps necessary for building the languaging specific portions of the basic application.
MicroStation MDL Programmer’s Reference Guide 18-23

A Complete Example
The application makefile: basic.mke
The makefile include file: basicrsc.mki
 18basicRscs = \
 19 $(reqdObjs)basic.mi \
 20 $(rscObjects)basic.rsc \
 21 $(rscObjects)basicmsg.rsc

 22$(rscObjects)basic.rsc : $(BaseDir)basic.r $(langSpec)basictxt.h \
 23 $(privateInc)basic.h

 24$(rscObjects)basicmsg.rsc:$(langSpec)basicmsg.r $(privateInc)basic.h
 25$(mdlapps)basic.ma : $(basicRscs)
 26 $(msg)
 27 > $(rscObjects)make.opt
 28 -o$@
 29 $(basicRscs)
 30 <
 31 $(rscLibCmd) @$(rscObjects)make.opt
 32 ~time

Lines 18-21 define the macro basicRscs to be the files basic.mi, basic.rsc and
basicmsg.rsc. This macro is used when creating the MDL application file basic.ma.

Lines 22 and 23 specify that the resource file basic.rsc should be generated from the
main application resource source file basic.r. Notice that this file is dependent upon
the basictxt.h header file which contains the dialog label definitions for all dialog box
related resources. As described earlier, the rule from mdl.mki indicates that the rcomp
resource compiler performs this operation.

Line 24 specifies that the resource file basicmsg.rsc should be generated from the
main application resource source file basicmsg.r. As before, the rule from mdl.mki
indicates that the rcomp resource compiler performs this operation.

Finally, in lines 25-32, the separate resource files basic.mi, basic.rsc and basicmsg.rsc
are combined by the rlib resource librarian into the application file basic.ma. Lines 27-
30 create the temporary response file make.opt that is then read by the resource
librarian on line 31. This also avoids exceeding the limits on the length of a DOS
command line. Notice that the basicRscs macro specifies both the dependency list and
the list of files that need to be merged.
18-24 MicroStation MDL Programmer’s Reference Guide

19 Dialog Box Style Guidelines
The MicroStation dialog box manager implements a user interface
style that follows the emerging OSF/Motif user interface standard.
When designing dialog boxes, the OSF/Motif Style Guide should be
used as the basic reference for style considerations. See “Dialog Box
Manager Overview” on page 15-1 for more information on the OSF/
Motif Style Guide.
Design Small Dialog Boxes
Try to keep dialog boxes as small as possible. It’s better to have multiple small dialog
boxes than one huge dialog box that does everything.

Remember that monitors come in various sizes and resolutions. If a dialog box is too
large it may not fit on the smaller screens. Monochrome screens are typically 720 pixels
wide and only 348 pixels tall. The most common color screens that will be used for
MicroStation are 640 pixels wide by 480 pixels tall. The size of dialog boxes is directly
related to the size of each screen’s default dialog font. MicroStation allows the user to
specify the font height to use for each screen, making it difficult to set exact limits on
dialog box size. As a general rule, however, do not design dialog boxes that are more
than 25 characters tall and 80 characters wide. Try to make them much smaller than
this maximum size.

Large dialog boxes obscure more of the windows underneath them, thus making it
difficult for the user to interact with their design file views - which are generally
underneath all dialog boxes. Non-modal dialog boxes should be sinkable, allowing
users, if they desire, to sink them behind view windows.

If an application will be translated to a different language, remember that the width of
some dialog boxes may have to be increased to make room for longer item labels. If
the dialog boxes are wide initially, after language translation they may become so large
they no longer meet the guidelines stated above.

Other alphabets may be wider than the Roman alphabet. For example, Japanese Kanji
characters are typically twice as wide as Roman characters. If a dialog box is designed
with the Roman alphabet and then converted to use Kanji, it may double the width.

For these reasons, try to keep dialog boxes small.
MicroStation MDL Programmer’s Reference Guide 19-1

Dialog Box Style Guidelines
Emphasize modeless rather than modal dialog boxes
Emphasize modeless rather than modal dialog boxes
A major characteristic of a well-designed graphical user interface application is that it is
very user-driven. The user has a wide number of operations available which can be
performed in any order desired. All of the application’s possible operations are
activated by visible graphical entities. The user has several options on the screen and
does not have to remember the command names. Operations that are invalid at a
particular time are displayed in a visually distinct manner, usually the graphical entities
are drawn grayed out or dim. The user knows immediately that an option is
unavailable and does not have to attempt it to find that it does not work. All of this
gives users the feeling that they control the application, not the other way around.

Modal dialog boxes tend to disrupt this image, forcing the user to pause and react to
the dialog box before performing any other operations.

Modeless dialog boxes, on the other hand, can remain on the screen while the user
interacts with other parts of an application. Modeless dialog boxes can display
application status information and also let the user modify application variables when
desired - even in the middle of another sequence of operations.

For these reasons, dialog boxes should be modeless by default. A dialog box should be
modal only if the situation requires it. Imagine how much less useful the “Element
Attributes” or the “Toggles” dialog boxes would be if they were modal. Every time the
user needed to change an item in these dialog boxes it would be necessary to bring the
dialog box up, make the changes, and then dismiss it. These dialog boxes could not
remain on the screen, where they show the current state of MicroStation’s locks or the
active element attributes.

Try to indicate when a modal dialog box will be opened as a result of choosing an
item. Pull-down text menu item labels and push button item labels should end with an
ellipsis if picking them opens a modal dialog box.

Limit the number of fonts
Placing too many text fonts in a dialog box can make it look busy or cluttered. By
default the dialog box manager creates dialog boxes with only two fonts. The normal
dialog font is used most of the time, and the bold font is only used for push button
item labels and within menu bar items.

Limit the number of colors
Too many colors in a dialog box make it distracting. The dialog box manager only uses
white, black, light gray and medium gray when drawing all of the dialog items. Any
other colors should be used sparingly. Remember that not all users have color screens.
19-2 MicroStation MDL Programmer’s Reference Guide

Dialog Box Style Guidelines
Use the standard order for push buttons
Use the standard order for push buttons
The OSF/Motif Style Guide recommends that the standard push buttons OK, Apply,
Reset, Cancel and Help be laid out horizontally along the bottom of dialog boxes and
in the order just listed. It is obviously not necessary to use all of the push buttons in
every dialog box - just be sure that for the push buttons that are used, the above order
holds.

Match the dialog item type to the intended operation
Toggle button items are used to indicate an on/off choice.

Option button items are used to select a single choice from a small group of options.

List box items are used to select one or more choices from a large list of options.

Push buttons are used to invoke an action.

Tool palettes are used to change the operational state of an application in a relatively
major way. For example, MicroStation uses tool palettes to set the current element
drawing or viewing operation.

Use MicroStation as an example
Become familiar with MicroStation’s dialog boxes before starting the design of a new
application. MicroStation has many good examples of dialog box design and the kinds
of user interactions that are possible.

Debugging Hook Functions

The Dialog Box Manager Message dialog
The dialog box manager provides the “Dialog Box Manager Messages” dialog box for
displaying debugging or other messages. It contains a list box item in which message
lines are stored as rows in the list. These messages can be browsed through by
scrolling through the list in the usual manner. The “Messages” dialog box is very handy
when debugging with only one screen or when running MicroStation in a dual-screen
configuration.

Messages are always added to the end of the list and up to 100 text lines can be stored
at one time. When the 101st text line is added, the first 50 text lines are deleted and the
new text line becomes the 51st row.
MicroStation MDL Programmer’s Reference Guide 19-3

Dialog Box Style Guidelines
Displaying strings
Displaying strings
A message can be displayed in the “Messages” dialog box by calling
mdlDialog_dmsgsPrint(char *messageString). If the “Messages” dialog box is not
visible, this function will also open it. messageString can contain embedded ‘\n’
characters that will cause the next list row to be used.

mdlDialog_dmsgsClear(void) clears the “Messages” dialog box. It takes no arguments.

Tracking hook function messages
One of the more difficult parts of learning to use the MicroStation dialog box manager
is understanding the type, order, and contents of the many messages that can be sent
to hook functions. To ease this task, the dialog box manager, upon request, can send
information about every message that is sent to dialog hook functions, item hook
functions, or item handlers to the Messages window. To get this information about
dialog hook function messages or item hook function messages, a hook must be
attached to the appropriate dialog or item.

MicroStation’s Message Window.
19-4 MicroStation MDL Programmer’s Reference Guide

Dialog Box Style Guidelines
Tracking hook function messages
The following MicroStation key-ins control the display of hook function message
information. They each open the Messages window if it has not been already:

Closing the “Messages” dialog box will turn off all message debugging. A DMSG
xxxDEBUG command must be reentered to continue tracking the dialog box manager
messages.

Sometimes it is useful to display dialog box manager message information under
program control. The following library functions are available to perform this task:

mdlDialog_dmsgsSet(boolean dialogMessages, boolean itemHookMessages,
boolean itemHandlerMessages, boolean verbose) controls which types of messages
for which information will be displayed. Set the dialogMessages, itemHookMessages or
itemHandlerMessages parameter to TRUE to display information for those types of

Key-in Description

DMSG ITEMDEBUG [on/off] Turns on/off the display of all dialog box item
messages that have been sent to item hook functions.
If an item does not have an item hook function no
debugging messages will be displayed for it.

DMSG HANDLERDEBUG [on/off] Turns on/off the display of all dialog box item
messages that have been sent to item handlers. These
messages are displayed whether or not items have
attached hook functions. Remember, messages that are
sent to item handlers do not necessarily get passed on
to item hook functions. It is up to the handler to
decide if a message should be sent to any attached
hook functions.
This command is less useful than
DMSG ITEMDEBUG.

DMSG DIALOGDEBUG [on/off] Turns on/off the display of all dialog box messages
that have been sent to dialog hook functions. If a
dialog box does not have a dialog hook function
attached to it, no debugging messages will be
displayed for it.

DMSG VERBOSEDEBUG [on/off] Turns on/off the display of detailed debugging
information for all of the above commands.

DMSG ACTION
SHOWMNEMONIC

Displays an alphabetized list of a dialog’s keyboard
mnemonics. Useful for guarding against key conflicts.
To obtain info on dialogs other than the Command
Window, you must assign this key-in to a function key
or access it via the shortcut <Control><Alt><Shift>-M.

DMSG CLEARDEBUG Clears the “Messages” dialog box.
MicroStation MDL Programmer’s Reference Guide 19-5

Dialog Box Style Guidelines
Tracking hook function messages
messages. Set verbose to TRUE to turn on detailed information for any displayed
messages.

mdlDialog_dmsgsPrintItemMsg(DialogItemMessage *dimP, boolean
filterCommandWindow, boolean fromHookFunction) displays information on the
dialog item message dimP in the “Messages” dialog box. It can be used to display
information on messages that are being sent to a particular item hook function. The last
two parameters should always be set to TRUE.

mdlDialog_dmsgsPrintDialogMsg(DialogMessage *dmP, boolean
filterCommandWindow) displays information on the dialog message dmP in the
“Messages” dialog box. It can be used to display information on messages that are
being sent to a particular dialog hook function. The last parameter should always be
TRUE.
19-6 MicroStation MDL Programmer’s Reference Guide

20 Dynamic Link Modules
Dynamic Link Modules (DLMs) are portions of code that can be
loaded and linked by MicroStation at runtime. These modules are
compiled into native machine code. Dynamic Link Modules are
created using the host operating system’s tools such as the compiler
and linker. The MDL tools are not used to create Dynamic Link
Modules.
Overview
Dynamic linking addresses a number of developer concerns:

• Performance of MDL.

• Shared libraries for MDL applications to use. Developers often have
multiple applications with common code.

• Access to object-code libraries (with some limitations).

• Ability to use the MDL built-in functions from native machine code.

• Access to C++.

• Access to 32-bit Windows NT DLLs.

Following are definitions of some terms relating to Dynamic Link Modules:

• Built-ins - variables and functions that are actually part of
MicroStation, but are accessible to MDL applications. They are also
available to Dynamic Link Modules.

• Dynamic Link Specification (DLS) - used to specify what symbols
can be resolved from a specific Dynamic Link Module. A Dynamic
Link Specification source file is compiled using the program dlmspec
to create a Dynamic Link Specification object file. A Dynamic Link
Specification object file is used when linking an MDL application to
tell mlink what symbols will be resolved from the Dynamic Link
Module.

• Native code - code created by using standard compilers and linkers.
The keyword nativeCode in a declaration tells the MDL compiler that
the function or variable being declared is part of MicroStation or a
DLM. The function or variable being declared is not part of the MDL
application but is accessible from the MDL application.
MicroStation MDL Programmer’s Reference Guide 20-1

Dynamic Link Modules
Overview
• Pseudo-code instructions - instructions generated by the MDL
compiler and understood by MicroStation’s MDL interpreter.

• Task ID - the name used for an MDL or MicroCSL application. This
name appears in MicroStation input queue elements. It also is used in
MicroStation commands that refer to MDL applications. For example,
in the command MDL UNLOAD QDIM, QDIM is the task ID. It is also
displayed in the MDL Applications dialog box.

• Resources - anything a DLM or MicroStation may allocate and release
for an MDL application. In this document, resource does not refer to
any of the resources that are managed by the MicroStation Resource
Manager. Examples of DLM resources are memory and file handles.

Developers should keep the following points in mind when working with Dynamic
Link Modules:

• The features of dynamic linking are not guaranteed to be available on
all platforms.

• Applications share the stack with MicroStation. On the PC, the
applications are limited by the size of MicroStation’s stack. This is not
a problem on any of the UNIX platforms or under Windows NT.

• On some platforms, there are problems when different Dynamic Link
Modules define variables of the same name and the variables are not
initialized at compile time. The second Dynamic Link Module may not
get a new copy of the variable. Even worse, if the first Dynamic Link
Module is removed, then the second may get a fault if it accesses that
variable. To avoid this, use as few uninitialized globals as possible.
This problem does not occur on the following versions of
MicroStation: Clipper, PC DOS and PC Windows NT.

✍ Please refer to the file devtools.txt, installed at the root of the /mdl
directory, for the latest information on compilers and linkers for each
platform.
20-2 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
Access to MicroStation’s Built-ins From DLMs
Changes to MDL Source
The MDL compiler generates special instructions for accessing functions and variables
that are not part of the MDL program. Therefore, it is necessary to identify for the
compiler the symbols that refer to functions and variables that are not in the MDL
application. To indicate that these symbols refer to code or data implemented in native
code rather than MDL, declare them using a storage class of nativeCode. The following
declarations tell the MDL compiler that exampleFunc is a function that was compiled to
machine code, and that exampleVar is a variable defined in a native module.

nativeCode int exampleFunc(int firstParam);
nativeCode long exampleVar;

When the MDL compiler compiles code that uses a function pointer, it must know
whether that pointer points to an MDL function or a nativeCode function. By default,
function pointers in MDL refer to MDL functions. A typedef or variable can be
designated as a pointer to a native-code function through use of the pointerToNative
pragma. The following lines would be used to create a typedef for pointing to a native
code function.

typedef int (*FuncP)();
#pragma pointerToNative FuncP

The syntax for the pointerToNative pragma is:

#pragma pointerToNative <object_name> [,]

object_name refers to a variable or typedef name. The pointerToNative pragma
accepts a comma-separated list of object names. Each object name must be a typedef
name or variable name. The object must have type pointer-to-function.

Access to MicroStation’s Built-ins From DLMs
On some platforms, DLM source files must include the file dloadlib.h to be able to
access built-in functions using the same names MDL programs use. dloadlib.h contains
define statements that cause the C preprocessor to replace references to MDL built-ins
with references to the internal names for the built-in functions and variables.

dloadlib.h is platform specific. On the HP and SPARC, it contains a lot of defines
because there are many names to translate. However, on the Clipper workstation, it
does not do anything because dynamic linking is implemented in such a way that
translation of the names is unnecessary.

If a source file includes dloadlib.h, then it should be possible to use that source file
unchanged on all platforms both as MDL source and as DLM source. All of the
differences should be handled by dloadlib.h.
MicroStation MDL Programmer’s Reference Guide 20-3

Dynamic Link Modules
Linking an MDL Program With a DLM
Linking an MDL Program With a DLM
The MDL linker mlink must know how to resolve the symbols for the DLM. It must
know what symbols can be resolved at runtime. Since the DLM itself cannot be linked
with the MDL program, a Dynamic Link Specification (DLS) object file is used. The DLS
object file specifies the name of the dynamic link module, the list of symbols to be
resolved from the dynamic link module, and the version number of the library. All this
information can be linked with the MDL program so that MicroStation can use it at
runtime to dynamically load and link the DLM.

The syntax for Dynamic Link Specification files is described in the “Dynamic Link
Specification Source Files” section.

mlink treats DLS object files like libraries. It does not make the DLS object file part of
the program unless the DLS object file resolves symbols required by the mdl object
files. Since it is treated like a library, the DLS object file must appear in the link step
after any MDL object files that use functions or variables from the corresponding DLM.

Runtime Concerns
MicroStation’s DLMs are modeled after standard dynamically linked shared libraries.
MicroStation does not create a process (does not allocate a process descriptor or MDL
descriptor) for a DLM. A DLM is primarily a set of functions that can be called by MDL
programs. A DLM is loaded only if it is required by an MDL program. This happens if
mlink resolved references for the program from a corresponding DLS object file.

Generally, a DLM executes only when a function in the DLM is called by an MDL
program or if MicroStation calls one of the DLM’s hook functions.

If a DLM is called by an MDL program, then that MDL program is the current process
while the DLM executes. If the DLM calls any functions that allocate resources that
must belong to a process, then the resources will belong to the MDL program.

It is difficult to predict what the current process will be when MicroStation calls a DLM
hook function. For example, a DLM can have a hook that is called when an MDL
program is unloaded. When MicroStation calls this hook, the current process is
random. It may be the MDL program affected by what is going on at the time, or it may
be MicroStation. If it is important for the DLM to know what MDL program is affected,
then a pointer to the MDL descriptor is provided as a parameter.

MicroStation never loads more than one copy of a DLM. If there are multiple requests
to load the DLM, then MicroStation keeps track of the number of requests. Each time
there is a request to unload the DLM, MicroStation decrements the counter of opens. If
the counter goes to 0, the DLM is physically unloaded if possible. On some systems, it
is impossible to unload the DLM.
20-4 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
Function Pointers as Parameters to Built-in Functions
Function Pointers as Parameters to Built-in Functions
DLM function pointers and MDL function pointers cannot be used interchangeably.
Using an MDL function pointer where a real function pointer is expected would cause
a fault. Also, using a real function pointer where an MDL function pointer is expected
would cause a fault.

There are many MDL functions for establishing asynchronous functions. These
functions generally have a form similar to mdlSystem_setFunction
(<function_type>, <function_pointer>). <function_pointer> must be an offset
into the current MDL application. It cannot be a pointer into the DLM. Therefore, a
DLM can call one of these functions to set up a hook for an MDL application, but it
cannot use these to set up a hook for itself.

In MicroStation’s .fdf files, all function parameters that are MDL function pointers are
declared as type MdlFunctionP. MdlFunctionP is declared in mdl.h as:

#if defined (mdl)
typedef int (*MdlFunctionP)();

#else
typedef unsigned long MdlFunctionP;

#endif

If a source file includes the .fdf files, then it should be impossible to pass real function
pointers where MDL function offsets are expected. Declarations such as the one for
mdlSystem_setFunction should cause the compiler to catch all invalid uses of these
functions.

void mdlSystem_setFunction
(
int type,
MdlFunctionP function
);
MicroStation MDL Programmer’s Reference Guide 20-5

Dynamic Link Modules
Calling Custom MDL Functions
Identifying MDL Applications
It may be important for some DLMs to keep track of certain MDL applications,
particularly if the DLM is used by more than one MDL application, and the DLM
allocates and frees resources for these applications. The DLM should be able to detect
when the application is removed. It should then free any of the application’s resources
that the application failed to free. MicroStation provides built-in functions to let a DLM
track an MDL application. MicroStation can notify a DLM whenever an MDL application
is unloaded.

Internally, MicroStation manages data structures called MDL descriptors to track the
status of MDL applications. Internally, most of the functions used to manage MDL
functions require a pointer to an MDL descriptor as a parameter. So, while the MDL
descriptor format is not published, a DLM can call various functions to obtain pointers
to important MDL descriptors.

The function mdlSystem_getCurrMdlDesc returns a pointer to the MDL descriptor of
the MDL application that is active when the function is called. The task ID associated
with an MDL descriptor can be determined with the function
mdlSystem_getMdlTaskID(mdlDescP). The MDL descriptor for a task can be
determined with mdlSystem_findMdlDesc(taskIdP) where taskIdP points to the
application’s task ID. This task ID is not case sensitive.

The MDL descriptor is essentially the internal name, and the task ID is the external
name. The task ID is also used in MicroStation input queue elements.

A DLM can have an unload hook that is called when an MDL application is unloaded.
Using this hook, the DLM can free any resources allocated for the MDL application.

Calling Custom MDL Functions
A DLM may need to call functions in the MDL application. The mechanism described
here to accomplish this works regardless of whether or not the native code was called
by an MDL function. The mechanism works even if the native code is called by one
MDL application and calls a function in another MDL application.

A DLM cannot call MDL functions directly. The native code must use
dlmSystem_callMdlFunction to call MDL functions. In addition, the native code must
know the offset for that function, and the address of the MDL descriptor for the
application that contains that function. As usual, 0 can be used to represent a NULL
MDL function pointer.

MicroStation needs a pointer to the MDL descriptor to determine the start of the code
segment so that it can determine the absolute address of the function. When
MicroStation calls an MDL function, its saves the current value of currMdlDesc, and sets
20-6 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
Determining When an MDL Program is Unloaded
it to the valued passed into dlmSystem_callMdlFunction. When
dlmSystem_callMdlFunction returns, MicroStation restores currMdlDesc.

See the section “DLM Functions” for more information on
dlmSystem_callMdlFunction.

Determining When an MDL Program is Unloaded
It is often important to know when an MDL application is being unloaded. For
example, if a DLM calls an MDL application’s user hook after the application has been
unloaded, the results will be unpredictable, and a crash may occur. Also, if the DLM is
allocating and tracking resources for an MDL application, then it must know to free
those resources when the application is unloaded.

The DLM can use an unload hook to learn when an MDL application is unloaded. To
install an unload hook, the DLM must call
dlmSystem_setFunction(DLM_SYSTEM_MDL_UNLOAD, <dlmID>, <unloadFunctionP>).
When an MDL application is unloaded, MicroStation will call the unload hook passing
the application’s MDL descriptor as a parameter.

Each DLM may have an unload hook, but a given DLM may have only one hook. To
remove an unload hook, call
dlmSystem_setFunction(DLM_SYSTEM_MDL_UNLOAD, <dlmID>, NULL). See the
description of userHook_mdlUnload for more information on this user hook.

Application-Specific Resources versus System Resources
There are a number of functions that allocate resources for an MDL program. These
resources then belong to the MDL program. MicroStation frees these resources when it
unloads the MDL application. Examples are dlmSystem_mdlMalloc and
dlmSystem_mdlFopen. These handle malloc and fopen calls from MDL programs.

dlmSystem_mdlFopen is merely a layer on top of fopen. dlmSystem_mdlFopen performs
an fopen and associates the FILE pointer with the currently active MDL application,
and then returns the same FILE pointer as fopen. To avoid problems, files opened with
dlmSystem_mdlFopen must always be closed with dlmSystem_mdlFclose. If fclose is
used to close a file opened with dlmSystem_mdlFopen, MicroStation will attempt to
close the file itself when it exits, the results of which will be unpredictable, and a crash
may occur. If DLM needs to open a file that will not be associated with any MDL
application, the DLM should call fopen directly.

Memory allocated by dlmSystem_mdlMalloc, dlmSystem_mdlCalloc or
dlmSystem_mdlRealloc must be freed by dlmSystem_mdlFree. Memory allocated by
MicroStation MDL Programmer’s Reference Guide 20-7

Dynamic Link Modules
Dynamic Link Specification Source Files
malloc must be freed by calling free. An MDL application cannot free memory that a
built-in or DLM function allocated by calling malloc directly. Memory allocated by
calling dlmSystem_mdlMalloc is automatically freed by MicroStation when the MDL
application is unloaded.

For more information, see the “Managing Application Resources” section of “A Sample
DLM” below.

Dynamic Link Specification Source Files
This section describes the syntax used for Dynamic Link Specification source files. The
dlmspec utility is used to compile a Dynamic Link Specification source file producing a
Dynamic Link Specification object file. The object file is used at link time to specify
information on symbols that are to be resolved at runtime. Normal MDL object files
(.mo files) that need to have symbols resolved from a given Dynamic Link
Specification object file must appear in mlink’s command line prior to the Dynamic
Link Specification file.

The statements in a Dynamic Link Specification file can be categorized as preprocessor
directives and commands. Comments are also supported. Comments are bracketed
with /* and */.

All preprocessor directives contain # at the start of a line. #include can be used to
include other source files. #if, #ifdef, #else, #elif and #endif can be used for
conditional compilation. #define can be used to define values used for conditional
compilation. It cannot be used to define macros. The Dynamic Link Specification
compiler dlmspec defines standard constants that can be used for conditional
compilation. The defines that are built in for the appropriate platforms are msdos,
pm386, IP32, clipper, unix, sparc, hp700, BIG_ENDIAN, EnvironV, XWindow, winNT,
win32, rs6000 and sgimips.

DLM source file commands all begin with %. The commands are %Version,
%Functions, %EndFunctions, %Variables, %EndVariables, %ModuleName and %End.

%Version is followed by a version number. This version number is saved in the
Dynamic Link Specification object file. It is also saved with the application at link time.
At load time, this version number is provided to the DLM’s initialization function.

%Functions tells dlmspec to start processing the subsequent symbols as function
names. It is used to specify the list of functions that can be resolved at runtime.
%EndFunctions is used to signal the end of the list. Any number of pairs of %Functions
%EndFunctions can be used, but they cannot be embedded.

%Variables tells dlmspec to start processing the subsequent symbols as variable
names. It is used to specify the list of variables that can be resolved at runtime.
20-8 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
Additional Include Files
%EndVariables is used to signal the end of the list. Any number of pairs of %Variables
%EndVariables can be used.

%ModuleName is followed by the name of a file. For DLMs, this is used at runtime to
determine the name of the file containing the DLM. The file name suffix usually is not
specified. It is system-specific. It is provided by MicroStation at runtime. The defaults
are .out (Clipper workstation), .rex (PC), .so (SPARC), .dll (Windows NT) and .sl
(HP700). No suffix is used on the RS/6000.

The final command in a Dynamic Link Module specification source file must be %End.

Additional Include Files
The following files are provided:

• dloadlib.h - contains #defines that map the MDL names into the real
MicroStation names if the MicroStation names are needed to load the
DLM. This file is system-specific. On platforms where the operating
system resolves dynamic links, it has a lot of entries.

• dlmfuncs.h - contains declarations and definitions used only by DLMs.

• .fdf files for all of the MDL built-ins that are not in the standard C
library. Most of these built-ins are available to both DLMs and MDL
programs. Both MDL source and DLM source can use the .fdf files.
The files are provided in the mdl/include directory along with all of
the MDL header files. The file dlmsys.fdf declares functions that are
available only to DLMs. The other .fdf files declare functions that are
available to both DLMs and MDL programs.
MicroStation MDL Programmer’s Reference Guide 20-9

Dynamic Link Modules
Dynamic Link Specification Source File
A Sample DLM
The mdl/examples/dlink directory contains an example that illustrates most of the
important concepts needed to implement a DLM. This example implements the UNIX
file I/O functions read, write, open, close, etc. To compile and link this example, just
run bmake -I$MS/mdl/include/fileio. Doing this will build the application including
both the MDL program and the DLM. Then load the MDL application testio1, testio2
or both. MicroStation will see that the applications need the DLM and will
automatically load it.

The concepts illustrated in the example are:

• Dynamic Link Specification Source file.

• Using two names for a given function - the name used within the DLM
and the name used for access from an MDL program.

• Associating resources (file handles) with a specific MDL application.

• Calling custom MDL functions from the DLM.

• DLM hook functions.

• Use of an initialization function.

• Use of the error-reporting function.

Although the makefile is not described in this chapter, it is well-commented.

Dynamic Link Specification Source File
The Dynamic Link Specification source file is fileio.dls. It has sections specifying the
version number, module name and function names. The %Version command specifies
a number that is stored with the Dynamic Link Specification object file. It is also stored
with any MDL application created with this object file. When the DLM is loaded into
memory, MicroStation calls the DLMs initialization function. The version number is
passed as one of the parameters. In this example, the initialization function initialize in
filemain.c verifies that the version number is less than 0x500. If it is 0x500 or greater,
then it rejects the load request and displays a message saying that the versions are
incompatible.

The %ModuleName command specifies the name of the file that contains the DLM. In this
example it provides the name fileio to specify that the DLM is in the file fileio.out
(Clipper workstation), fileio.rex (PC), fileio.so (SPARC), fileio.dll (Windows NT), fileio
(RS/6000) or fileio.sl (HP700).

The %Functions section specifies what functions can be accessed from an MDL
program that is linked with this DLM. For each function, if only one function name is
given then that name is used both within the MDL program and within the DLM. If a
specification also contains a name in parentheses, then the name preceding the
20-10 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
Managing Application Resources
parentheses is used by the MDL program and the name in the parentheses is the name
used by the DLM. Consider open (fileio_open). When the MDL program calls the
function open, it is calling the DLMs function fileio_open.

This example contains an empty Variables section. This section would be used for
listing the variables that can be accessed from the MDL application. The format is the
same as for functions.

Managing Application Resources
When MicroStation allocates resources for an MDL task, it associates those resources
with that MDL task. If the MDL task is unloaded, then MicroStation must free those
resources. Since a DLM should appear to be part of MDL, it must behave the same way.
When an MDL application is unloaded, a DLM must also release all resources it
allocated for that application.

In this example, file handles are allocated by open, create and dup. Therefore, the
DLM must intercept all calls to these functions and record what MDL application called
the function.

The first step in the procedure is to establish different internal and external names for
these functions. This is done in the Dynamic Link Specification file.

✍ The specification for open is open(fileio_open). This specifies that the
name “open” can be used in an MDL program. When the MDL program
calls open, MDL will call the DLM’s function fileio_open.

The function fileio_open must associate the current MDL application and the file
handle returned by the real open. To get an identifier for the MDL application, it calls
mdlSystem_getCurrMdlDesc. Then it finds a free entry in the array fileList. In that
entry, it records both the file handle and the MDL descriptor.

The DLM also intercepts calls to close. When the MDL application calls close, the
DLM’s function fileio_close intercepts the call. It clears the data structure where it
had established that the handle was associated with this MDL application.

The final step in controlling the file handles is to guarantee that when the MDL
application is unloaded, all of its open files will be closed. To do this, the DLM sets up
an MDL unload function, mdlUnloadHook, to be called whenever an MDL application is
unloaded. MicroStation passes a pointer to the MDL descriptor when it calls the unload
hooks. The DLM uses this pointer to determine what files are owned by the MDL
application that is being unloaded. It closes all of these files.
MicroStation MDL Programmer’s Reference Guide 20-11

Dynamic Link Modules
Emulation of an MDL Asynchronous Function
Emulation of an MDL Asynchronous Function
This application supports a user hook to be called whenever an MDL application
opens, creates or duplicates a file.

MDL applications set up the user hook by calling fileio_setFunction. This function
records the offset of the function and the current MDL descriptor. Whenever an MDL
application opens, creates or duplicates a file the DLM calls all of the hooks using the
function dlmSystem_callMdlFunction. The first two parameters for this function are a
pointer to an MDL descriptor and the offset to the MDL function. The remaining
parameters are variable. These parameters are passed to the MDL function.

DLM Hook Functions
The DLM fileio sets up a hook function to be called whenever an MDL application is
unloaded. It does this by calling dlmSystem_setFunction. Notice that this function is
similar to the mdlSystem_setFunction except that the second parameter identifies the
DLM. When an MDL application sets a user hook it does not have to identify itself
because MicroStation always knows what MDL application is active. However,
MicroStation does not have any concept of the active DLM. Therefore, a DLM must
identify itself to the dlmSystem_setFunction call. When MicroStation calls the DLM’s
initialization function, MicroStation provides the DLM’s identifier as one of the
parameters. The DLM uses this identifier as the second argument in calls to
dlmSystem_setFunction.

Initialization Function; initialize
The DLM fileio contains an initialization function. This function is called immediately
after the DLM is loaded. Typically, this is used to verify that the versions are compatible
and to set up any hook functions that are required.

The initialization function must always be called initialize.

If the initialization function returns anything other than SUCCESS then the load fails and
the MDL application is unloaded.

Error Reporting Function; dlmSystem_displayError
When a load fails, many error messages are typically required to completely explain
what happened. The message fields in the Command Window are insufficient for
displaying all the error messages. Therefore, load errors are reported with the function
dlmSystem_displayError. The format for this is the same as for printf, except that
the messages should not have a newline. The function dlmSystem_displayError
appends a newline to every message. The dlmSystem_displayError function is also
available to DLMs.
20-12 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
C++ DLMS
C++ DLMS
Dynamic Link Modules containing C++ object code require additional work on certain
platforms. This additional work mainly pertains to “static constructors and destructor”
routines. When compiling C++ code which contains static objects, the compiler
automatically inserts functions to create and destroy these static objects. When the
DLM is loaded, it must be ensured that those constructor routines get called. Similarly
when the DLM is unloaded, the destructor routines must be invoked. The work
required to accomplish these goals is platform specific. Further, this work can also vary
between different C++ compiler versions.

The list of platform specific compiler versions for each platform is documented in
devtools.txt installed in the root of the /mdl directory.

Platform Specifics
When this document was written, the example had been tested on a SPARCstation, a
Clipper workstation running an EnvironV version of MicroStation, a PC running DOS, a
PC running Windows NT, an RS/6000 workstation, an HP workstation, a DEC Alpha
running Windows NT, an SGI Indigo and a SPARCstation running Solaris v2.2. This
section describes some of the problems that were encountered.

In general, it is dangerous to have a DLM that needs to be linked with any system
libraries. When linking with a system library, it is very difficult to link in the desired
modules from the library without bringing in extra modules. For example, the link step
may bring in a new copy of heap management but may not have any of the heap
management data structures initialized.

The example violates this rule to illustrate how to handle some of the difficult
problems that arise in linking DLMs.

Since nearly all standard C functions are available as built-in functions, a DLM should
not have to use any of the shared libraries. In fact, many DLMs will not be linked with
any libraries. All of the references will be resolved at runtime from MicroStation’s
built-ins. A DLM should be able to have all of the symbols resolved from MicroStation’s
built-ins at runtime.

Clipper-specific notes
A DLM is a relocatable object file. To create a relocatable object file, use the UNIX
utility ld to combine object files. Specify -r in the command line to specify that the
output is a relocatable object file, not an executable file. ld must be used to start the
link; neither acc or cc pass the -r flag to ld.
MicroStation MDL Programmer’s Reference Guide 20-13

Dynamic Link Modules
C++ DLM Platform Specifics
MicroStation can resolve symbols from a shared library only if MicroStation is linked
with that shared library. Currently, only the tools and C shared libraries are supported.
In the XWindows version of ustation32, programs will be able to use the XWindows
shared library.

In this example, the link is performed in two steps. First fileresl.out is created. This
resolves references to symbols that are to be resolved from the system libraries rather
than from MicroStation. This step resolves as few symbols as possible. Then
fileresl.out is linked with the other object files to create fileio.out. There are many
references unresolved in fileio.out. These are all resolved at runtime when fileio.out is
loaded. If the link step only contained one step, and the link step that builds fileio.out
used the libraries, then these references would be resolved from the libraries rather
than from MicroStation.

On the Clipper, it is particularly important that the DLM not link in another copy of
malloc, fopen or assert. The DLM must use the copies of these functions that are
linked with MicroStation. When a DLM is linked with system libraries, the system
libraries typically cause the link to link in the these functions from the standard library.
To avoid this, use the files dlmalloc, dlmfopen and dlmassert that are provided with
MicroStation. If a DLM contains one of these functions, and it is resolved from a file
other than these, then MicroStation displays a message similar to “malloc cannot be
redefined”. This example illustrates how to use dlmalloc.o in a link step.

C++ DLM Platform Specifics

On the Intergraph Clipper platform you have to:

- explicitly search the C++ object files for the static constructor and destructor
routiness. The static constructor and destructor functions are generated by the
compiler. The static constructors have a prefix of ‘__sti__’ and the destructors have a
prefix of ‘__std__’. Typically a command like:

% nm foo.o | grep ‘__sti__’
% nm foo.o | grep ‘__std__’

will generate a list of the required functions.

- build a list of those function pointers.

extern ‘C’
{

extern void __sti__*******();
extern void __sti__*******();
...
extern void __std__*******();
...

};
20-14 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
C++ DLM Platform Specifics
- manually execute them in initialize.

typedef void(*pfv)();

static pfv static_initializers[]=
{

__sti__**********(),
...
0

};

static pfv static_initializers[]=
{

__std__**********(),
...
0

};

extern ‘C’ void run_static_ctors()
{

int i;
pfv *ifnp;

for (ifnp=static_initializers,i=0; *ifnp; ifnp++,i++)
{

(*ifnp)();
}

};

extern ‘C’ void run_static_dtors()
{

pfv *dfnp;

for (dfnp=static_destructors; *dfnp; dfnp++)
{

(*dfnp)();
}

}

Then run them from initialize.

static int initialized=0;
int initialize
(

char *filename,
char *taskid,
void *dlmId,
unsigned long initparam

)
{

if (!initialized)
MicroStation MDL Programmer’s Reference Guide 20-15

Dynamic Link Modules
SPARCstation-specific Notes
{
...
/* Initialize the C++ portion of the DLM */

#if defined (unix) && defined (clipper)
run_static_ctors();

#endif
...
initialized=1;

}
}

You will need to setup a DLM unload handler function with the following function call
initialize.

typedef int (*pfi)();
dlmSystem_setFunction(DLM_SYSTEM_DLM_UNLOAD, dlmId,(pfi)

dlmUnloadHandler);

The DLM unload handler function will then call:

static int dlmUnloadHandler()
{

/* Finalize the C++ portion of the DLM */
#if defined (unix) && defined (clipper)

run_static_dtors();
#endif

return 0;
}

SPARCstation-specific Notes
The DLM is a sharable object file. This is done automatically. There is nothing unusual
in the compilation or link steps, except that .so is specified as the file suffix for the
sharable object the link step creates.

The DLM must provide intermediate functions to call functions that are in the shared
library. MDL applications cannot directly call functions from a system shared library.
The MDL application must call a function in the DLM that in turn calls the function in
the shared library. The runtime load step would fail because MicroStation cannot get
the address of symbol from the shared library. The system call used for that would fail
and would terminate MicroStation.

On other systems, MDL functions can call library functions directly.

MicroStation never unloads a DLM. There is a bug in the SunOS that causes
MicroStation to crash when a DLM is reloaded. To get around this problem,
20-16 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
Solaris Notes
MicroStation always keeps the DLM loaded. This is most significant to developers who
must restart MicroStation to use a new version of a DLM.

Solaris Notes

The link step for a Solaris DLM should contain -B symbolic. This tells ld to resolve any
symbols that can be resolved from the DLM at link time. The remaining symbols are
then resolved when MicroStation loads the DLM.

If -B symbolic is not specified, nothing is resolved at link time. When MicroStation
loads the DLM, the dynamic loader tries to resolve each symbol from MicroStation,
then from the DLM. Therefore, if the DLM has a function that has the same name as a
MicroStation function, the DLM uses MicroStation’s copy of the function. The DLM’s
copy of the function is never called. To prevent this from happening, include -B
symbolic in the link step.

If a link step contains -B symbolic then the linker displays warnings about every
reference that cannot be resolved at link time. Often this is useless information because
the DLM has many references that are to be resolved from MicroStation at load time. If
your are using csh, you can redirect standard out by appending the following to the
end of the link step:

>&! /dev/null

If you are using ksh, you can redirect standard out by appending the following to the
end of the link step:

2> /dev/null

C++ DLM Platform Specifics

This platform requires DLMs to be linked with CC, the C++ compiler, not ld, the linker.
This ensures the appropriate initializations. The remaining arguments are the same as
for C DLMs. No further changes are necessary for this platform.

Debugging Solaris

To debug a DLM under Solaris, first start MicroStation and load the DLM. Then start the
debugger using the -pid option to make the debugger attach to MicroStation. The
following command provides an easy way to do this:

dbx - `ps -ae | grep ustation | awk '{print $1'}'`

Place this in a shell script or create an alias to make this easy to use. The following
command establishes this an an alias for ksh:

alias dbxdlm="dbx - \`ps -ae | grep ustation | awk '{print $1}'\`"
MicroStation MDL Programmer’s Reference Guide 20-17

Dynamic Link Modules
HP700-Specific Notes
HP700-Specific Notes
The DLM is a shared library. All of the object files must contain position-independent
code. This is achieved by specifying +z in the compilation step. Include -b in the
command line of the load step to specify that the output file is a shared library.

Prior to MicroStation 5.5, DLM’s on the HP were always loaded with the
BIND_IMMEDIATE option. That means that as soon as the DLM is loaded, all references
are resolved. That has the advantage that all unresolved references are detected
immediately. It also protects the DLM from having symbols resolved from other DLM’s
that are loaded later. It has the disadvantage that load time may be slower.

Starting with the MicroStation 5.5, MicroStation specifies BIND_DEFERRED when loading
a DLM. This gives the DLM developer the ability to choose whether the DLMs are
loaded with BIND_IMMEDIATE or BIND_DEFERRED. The operating system loads the shared
libraries with BIND_IMMEDIATE if the application specifies BIND_IMMEDIATE, or if the
application is linked with the -B immediate option. Although this change should not
affect most DLM’s, it does give the developer the ability to control how the DLM is
loaded.

C++ DLM Platform Specifics

This platform requires DLMs to be linked with CC, the C++ compiler, not ld, the linker.
This ensures the appropriate initializations. The remaining arguments are the same as
for C DLMs. No further changes are necessary for this platform.

Debugging on HP

To debug on the HP700 using xdb, use the -l and -s option in the xdb command line.
The -s tells xdb that you want to debug shared libraries. Use the -l option to specify
the libraries you want to debug. For example, to debug the DLM from the fileio
example start xdb with the command line:

xdb ustation32 -s -l $MDLAPPS/fileio.sl

From xdb enter the command lsl to list the shared libraries. You should see your
shared library in the list.

You will need a special version of ustation32 to debug shared libraries. See the file
mdl/devtools.txt for information on how to obtain the debugging version of
ustation32.
20-18 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
PC Protected Mode Notes
PC Protected Mode Notes
The DLM is a REX file that is created by the Phar Lap linker and then processed by the
BSI-supplied utility linkdlm to create a DLM-specific symbol table.

A REX file is a standard Phar Lap relocatable executable that must be linked with a
number of standard BSI-supplied object files and libraries. Both linkdlm and
MicroStation’s runtime verify that these files were included in the link step.

The object file ustnfrst.obj must be the first input file specified in the link step. The
library file dlmfuncs.lib must be specified after all of the object files. This contains
definitions for all of the symbols that can be resolved from MicroStation. dlmdata.lib
should follow dlmfuncs.lib but should appear before the MetaWare libraries.

After creating the REX file, run it through linkdlm. The command to invoke linkdlm is:

"linkdlm -r<rex file> -o<output file>"

<rex file> specifies a REX file that was created by the Phar Lap linker
and <output file> specifies the name of the output file. The output will be used as a
DLM.

If you find that structure members such as fields in the Tcb are not correct, then your
DLM is probably not compiled with the correct alignment information. By default, the
MetaWare 3.x compilers do not pack structures. For compatibility with MicroStation 4.x,
MicroStation needs the strctures packed. Therefore, code that will access MicroStation’s
structures, such as the Tcb, must be compiled with the following pragma:

pragma Align_members (1)

If your use a makefile similar to the one provided with the dlink example and you use
the default compilation rule, then this pragma is included in the compilation. The
default compilation rule specifies that the compiler must use the profile extg.pro, and
that extg.pro contains that pragma.

If your program has random floating point errors or causes MicroStation to have
random floating point errors, then the errors are probably floating point stack
overflows. These can occur if a function calls a function that returns a floating point
value, but the source file of the calling function does not contain a declaration of the
called function. A function that returns a floating point value pushes that value onto
the floating point stack. The calling function must contain code to remove that value
from the floating point stack, even if it does not use the return value.

Therefore, the compiler must know what functions return floating point values so it
can generate the code to clean up the floating point stack. If the source file that
contains a call does not contain a declaration of the called function, then the compiler
cannot know that the floating point value has to be popped. Consequently, some
MicroStation MDL Programmer’s Reference Guide 20-19

Dynamic Link Modules
C++ DLMS Platform Specifics
values are left on the stack. This eventually causes a floating point exception due to an
overflow of the floating point stack.

✍ This is tremendously difficult to debug because the symptom often shows
up in a place other than the cause of the problem.

C++ DLMS Platform Specifics

The DLM needs to be linked with an initcxx.obj file which is provided in the $*****
directory. The initialize subroutine needs to make the following function call:

static int initialized=0;
int initialize
(

char *filename,
char *taskid,
void *dlmId,
unsigned ling initparam

)
{

if (!initialized)
{

...
/* Initialize the C++ portion of the DLM */

#if defined (msdos)
init_cxx_globals();

#endif
...
initialized=1;

}
}

Windows NT Notes
DLMs are implemented as runtime Windows NT Dynamic Link Libraries. Application
DLMs are DLLs. To make MicroStation built-in functions visible to DLMs, MicroStation
itself consists of a small executable (ustation.exe) and a large DLL (ustation.dll).

The dlmspec program, which processes a Dynamic Link Specification (.dls) file, has
been modified to create a Windows Module Definition automatically if desired. To take
advantage of this feature, use the command line switch -w<module def file name>. If
you use bmake and include mdl.mki, you can define a bmake variable called
moduleDef and the command line argument to dlmspec is automatically generated.
The Module definition file is processed by the Windows NT lib program to produce
both an import library .lib file and an exports specification .exp file. The .exp file is
linked with the DLL and defines the functions and variables that are visible from the
20-20 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
Windows NT Notes
DLL. The .lib file is linked with executables that use the DLL as a "load time" DLL.
Usually the .lib file is not used when creating a DLM, but the .exp file is.

Application DLLs must link with the MicroStation built in import library if they use any
built in functions or variables. This import library is in the mde\mdl\library directory,
and is called mdlbltin.lib.

Every Windows NT DLL must have an entry point defined as part of the link step. This
is usually called LibMain. This function is called when the DLL is loaded or unloaded,
and can perform initialization or unload chores at those times. Minimally, it must return
a value of 1 (the Windows convention for successful completion) to indicate successful
initiation.

On the link step, Window NT DLLs are told where to load. Code sharing between
different invocations of executables that use DLLs is only possible if they can load the
code at the same address. If they can’t, the DLLs still work, but there are multiple
copies of the code. Most MicroStation DLLs are not large, and thus code sharing is
much less important that it would otherwise be. Thus the strategy for picking a starting
address in the DLM example is to pick the same load address as the MicroStation DLL
uses (0x1c000000). This guarantees that the suggested load address will be unavailable,
and the system will pick another available address.

The example includes a source file called dllentry.c that implements a minimal
LibMain. The dllentry.c file can be used in other DLMs if desired.

If you take advantage of the automatic creation of the Windows module definition file
mentioned above, you will have to make sure there is an initialize function in your
DLM, since the .def file reated by dlmspec will expect one. A minimal initialize
function should simply return 0 (the MicroStation convention for success), indicating
successful initialization. On other platforms, or if you generate your own module
definition file, the initialize function is not required, but it never hurts to have one
either.

Unfortunately, Windows NT DLLs cannot export data items, only pointers to data. This
complicates a DLL’s use of MicroStation built-in variables. An include file
mde\mdl\include\dloadlib.h is provided that minimizes the effort required to make
this adjustment and maintain source-code compatibility across platforms. This include
file contains definitions of the following type:

 #define mgds_modes (*mgds_modesP)
#define tcb (*tcbP)

and the mdlbltin.lib import library resolves mgds_modesP. Thus expressions such as:

if (mgds_modes.three_d)

and

tcb->actangle = PI;
MicroStation MDL Programmer’s Reference Guide 20-21

Dynamic Link Modules
C++ DLM Platform Specifics
are changed by the preprocessor to:

if ((*mgds_modesP).three_d)

and

(*tcbP)->actangle = PI;

which are acceptable and correct expressions.

C++ DLM Platform Specifics

Nothing special needs to be done on this platform for C++ DLMs.

Silicon Graphics Notes
The DLM is a sharable object file. To make a sharable object, specify “-shared” in the
link step. The link step must also contain -B symbolic.

The following text is directly from SGI’s ld documentation:

When -B symbolic is specified, ld inserts the element DT_SYMBOLIC into the “.dynamic”
section of a shared object library and this alters the dynamic linker's symbol resolution
algorithm for references within the library. Instead of starting a symbol search with the
executable file, the dynamic linker starts from the shared object itself. If the shared
object fails to supply the referenced symbol, the dynamic linker then searches the
executable file and other shared objects as well.

Consider what this means for a DLM. If both the DLM and MicroStation contain a
function named convertFormat and the DLM was linked without -B symbolic, then
the DLM uses MicroStation’s convertFormat. That occurs because the dynamic linker
first searches for symbols in the executable file, ustation32. However, if -B symbolic
is specified, then the DLM uses its own version of convertFormat because the dynamic
linker starts the search for symbols with the shared object itself.

C++ DLM Platform Specifics

This platform requires DLMs to be linked with CC, the C++ compiler, not ld, the linker.
This ensures the appropriate initializations. The remaining arguments are the same as
for C DLMs. No further changes are necessary for this platform.
20-22 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
Debugging SGI DLMs
Debugging SGI DLMs

To debug a DLM on the SGI Unix platform, just start up the debugger after the DLM is
loaded. You can start dbx and have it attach to MicroStation by using the command:

dbx -P ustation32

IBM RS/6000 Notes
On the RS/6000, MicroStation Dynamic Link Modules are implemented as shared
objects. A link step for an RS/6000 DLM must specify a symbol file, an entry point and
a binder-control import list. All three of these are described in the following
paragraphs.

The link step specifies the binder-control import list with the command line option:

-bI:$(mdlLibs)ustnexport.lst

This file specifies a list of functions and variables available from MicroStation. The
ustnexport.lst distributed with MicroStation has #! as the first line. This marks the file
as an import list, but does not specify what file to use to resolve the symbols. Because
this does not specify a file, the DLM will not contain any information on what file to
use to resolve the symbols. When MicroStation loads the DLM, the loader resolves all
the symbols from MicroStation whenever possible, but it does not report unresolved
symbols. To make the loader report unresolved symbols, change the first line to
completely specify the name of the MicroStation executable. For example, you may
change it to:

#! /usr/ingr/mstation/ustation32

The linker then stores information in the DLM indicating that all of the symbols must
be loaded from /usr/ingr/mstation/ustation32. Now when the loader loads the DLM,
it will report errors for each symbol that cannot be resolved from MicroStation.
Although this technique is useful when checking for unresolved symbols, it does
require that the MicroStation name and location not be changed once the DLM is
linked (i.e., created by ld.) Therefore, you should use this technique only for
debugging and should remove the explicit path name from the import list prior to
creating a usable version of your DLM.

The link step specifies the entry point using the -e command line option. If the -e
command line option is not specified, then the linker assumes that the entry point is
main. That will cause the linker to display an error message saying that main is
unresolved.

If the makefile uses the standard approach for creating the symbol file, then the link
step should contain the command line option -edlmEntryFunction to specify the entry
point. The entry point function is in the symbol file created by dlmspec. Immediately
MicroStation MDL Programmer’s Reference Guide 20-23

Dynamic Link Modules
IBM RS/6000 Notes
after loading the DLM, MicroStation calls the entry point function specifying the DLM id
as the only parameter. MicroStation calls the entry point function even before it calls
the initialize function.

The symbol file provides information that MicroStation uses to determine the addresses
of functions and variables in the DLM. If a makefile uses the default rule for compiling
a .dls file, and the bmake variable moduleDef is defined, then dlmspec creates the
symbol file. The fileio example uses fileisym.c as the symbol file. Following is part of
the symbol file:

#include <basedefs.h>
#include <dlmfuncs.h>

extern int initialize();
extern int fileio_open();
extern int fileio_creat();
extern int fileio_dup();
extern int fileio_close();
extern int fileio_setFunction();
extern int fileio_read();
extern int fileio_write();
extern int fileio_chmod();
extern int fileio_lseek();

Private DlmFunctionAddress dlmFunctionAddresses[]=
{

{10, "initialize", initialize},
{11, "fileio_open", fileio_open},
{12, "fileio_creat", fileio_creat},
{10, "fileio_dup", fileio_dup},
{12, "fileio_close", fileio_close},
{18, "fileio_setFunction", fileio_setFunction},
{11, "fileio_read", fileio_read},
{12, "fileio_write", fileio_write},
{12, "fileio_chmod", fileio_chmod},
{12, "fileio_lseek", fileio_lseek},
NULL

};

Private DlmDataAddressdlmVariableAddresses []=
{

NULL
};

int dlmEntryFunction
(
void *dlmP
)
{

20-24 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
C++ DLM Platform Specifics
dlmSystem_publishSymbolNames(dlmP, 1, dlmFunctionAddresses,
dlmVariableAddresses);

return 0;
}

This file is created entirely by dlmspec, although you may create a similar file
manually. If you do not need to create this manually, this you can ignore the rest of
this description. You should not need to create this manually unless you are using
multiple .dls files.

C++ DLM Platform Specifics

The DLM must be linked with makeC++SharedLib, which is delivered with xlC, the
IBM C++ compiler. The file that contains the initialize code must also include the
following code:

#if defined (rs6000)
typedef void (*PFV)();
typedef struct PFVSTR
{

PFV init, term;
} PFVSTR;
extern PFVSTR __cdtors[];

#endif

...

int i;
PFV tmpfunc;
for (tmpfunc=__cdtors[1].init, i=1; tmpfunc&&tmpfunc!=(PFV)-1;

tmpfunc=__cdtors[++i].init)
{

tmpfunc();
}

You will need to setup a DLM unload handler function with the following function call
in initialize.

typedef int (*pfi)()
dlmSystem_setFunction(DLM_SYSTEM_DLM_UNLOAD, dlmId, (pfi)

dlmUnloadHandler);

The DLM Unload Handler function will then call:

int i;
PFV tmpfunc;
MicroStation MDL Programmer’s Reference Guide 20-25

Dynamic Link Modules
dlmSystem_publishSymbolNames (RS/6000 only)
for (tmpfunc=__cdtors[1].term, i=1; tmpfunc&&tmpfunc!=(PFV)-1;
tmpfunc=__cdtors[++i].term)

{
tmpfunc();

}

dlmSystem_publishSymbolNames (RS/6000 only)

The function dlmSystem_publishSymbolNames is a MicroStation function that is
available only on the RS/6000. The declaration is:

void dlmSystem_publishSymbolNames
(
void *dlmID,
int infoFormat,
DlmFunctionAddress functionAddrs[],
DlmDataAddress dataAddrs[]
);

dlmID is the DLM id that uniquely identifies the DLM. It is provided as a parameter to
the entry function. It is the same value that is passed into the initialize function.

infoFormat specifies the format of the information provided in the call to
dlmSystem_publishSymbolNames. Currently, 1 is the only valid value.

functionAddrs and dataAddrs provide information MicroStation needs to find all of the
functions and variables to be resolved from the DLM.

Debugging on RS/6000

On the RS/6000, it is possible to debug DLMs using either xde or dbx. First start
MicroStation and load the DLM. Then start the debugger specifying the -a command
line option and MicroStation’s process id to attach to MicroStation. After that, you can
debug as normal. The following command provides an easy way to start the debugger
and attach to MicroStation:

dbx -a `ps -ae | grep ustation32 | awk '{print $1}'`

Place this in a shell script or create an alias to make this easy to use. The following
command establishes this an alias for the ksh:

alias dbxdlm="dbx -a \`ps -ae | grep ustation32 | awk '{print \$1}'\`"
20-26 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
Debugging on RS/6000
Calling Across DLMs
This section describes how DLMs can cooperate with 1 DLM calling into another.
There are really 2 issues to address:

• all DLMs are in the same address space. Therefore, one DLM can
access functions and variables in other DLM’s via pointers.

• DLMs can symbolically access symbols in other DLMs on some but not
all platforms. A DLM cannot have symbols resolved to another DLM
on the DOS, Clipper and Macintosh versions of MicroStation. It can
have the symbols resolved on other platforms.

The techniques to have the symbols resolved vary from platform to platform.
Generally, the client DLM must be linked with the server DLM or with some sort of
symbol definition file for the server DLM.

For the Windows platforms, the list of symbols in the module definition file (.def) of
the server DLM must contain all of the symbols that will be available to other DLMs.
This Module Definition File is used to generate an import library (.lib) file that is linked
with client DLMs. The .lib file must appear in the link step after the object files and
libraries that reference symbols it resolves.

On the Unix platforms other than the Clipper, it is possible to resolve symbols from a
server DLM by actually specifying the server DLM in the client’s link step. On most of
the Unix platforms, if the link step specifies a path name and a file name instead of just
a file name for the server DLM, then at runtime the library must be in the location
specified by the absolute path name. To resolve this problem, just specify the file
name. However, doing so causes a new problem. You need to be concerned about
how the operating system will find the server DLM. One clean technique is to force
MicroStation to load the server DLM prior to loading the client DLM. Then when the
operating system needs the server DLM for the client DLM, it will find that it already
has it loaded. The operating system will not have to search for the library. To guarantee
that the server library is always preloaded, any MDL application that has symbols
resolved from the client DLM must also have symbols resolved from the server DLM,
and the server DLM must appear in the MDL application’s link step prior to the client
DLM. That will cause MicroStation to load the server DLM first using either the MS_MDL
environment variable or the host application’s path to find the DLM.
MicroStation MDL Programmer’s Reference Guide 20-27

Dynamic Link Modules
Debugging on RS/6000
Debugging DLMs
If your specific platform is not discussed in this section, review the general information
below and then refer to the platform-specific section for debugging details.

To debug a DLM on a Clipper workstation, just start MicroStation under dbg. After the
DLM has been loaded, press <Ctrl-C> to get into the debugger. Then you can set
breakpoints in the DLM. To invoke the debugger immediately after the DLM is loaded
but before the initialize function is called, set a breakpoint on the function
dlink_debugHook. This function is called immediately after a DLM is loaded.

MicroStation DOS PC DLMs can be debugged using the 386|SRCBug debugger from
Phar Lap Software. Because the executable code for these modules is loaded after
MicroStation starts, the debugger symbol table must besynchronized with the actual
location of the executable code when the code isloaded. Once the symbol tables are
synchronized, 386|SRCBug will allow source level debugging of the DLM.

➤ To debug a DOS DLM, use the following procedure

1. Link the program with symbols and start MicroStation with the
debugger using the following command line: SB386 -SYMFILE
<PATH> MGDS.EXE
<path> specifies the .rex file that was used to create the DLM.

2. Set the MDL global variable debugLevel to 5 to cause the debugger to
break with an int 3 instruction when the DLM is loaded. This can be
done from the MicroStation command prompt with the set debug 5
command. When the breakpoint occurs, the debugger will display a
message like:

Breakpoint at ssss:oooooooo ...

Synchnronize the symbols with the debugger command: XO EAX

✍ eax is the value stored in the eax register which is used here to avoid
having to re-type the value in the eax register.

Step past the int 3 instruction with the debugger command: R EIP EIP+1

Breakpoints can now be set at symbols within the DLM and execution can be resumed.

✍ You may want to set MS_TRAP=none. If MS_TRAP is not defined, MicroStation
tries too catch all faults and recover or at least report the source. If your
DLM casues a fault, MicroStation intercepts it and reports what line in the
MDL program caused the DLM to be called. If MS_TRAP is set to none, the
fault is passed to the debugger. You may define MS_TRAP by:
20-28 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
DLM Functions
• Defining it as a DOS environment variable using the DOS command
set MS_TRAP=none.

• Setting it in a MicroStation configuration file using the statement
MS_TRAP=none.

• Modifying the user configuration by selecting the Modify User
Configuration menu selected from the Workspace option from the
User pulldown menu. You must restart MicroStation before it takes
effect.

MS_TRAP is only needed under DOS. Under the other operating systems, the debugger
intercepts the fault and MicroStation does not know about it. DOS is the only platform
where MicroStation processes the fault before the debugger does.

DLM Functions
This section documents the following built-in functions:

Function Used to

dlmSystem_getDLMPath Get the name of the file that contains the
DLM.

dlmSystem_mdlMalloc malloc and associate the memory with the
current MDL app.

dlmSystem_mdlCalloc calloc and associate the memory with the
current MDL app.

dlmSystem_mdlRealloc realloc the memory with the current MDL
app.

dlmSystem_mdlFree Free memory associated with with the current
MDL app.

dlmSystem_mdlFopen fopen and associate the file pointer with the
current MDL app.

dlmSystem_mdlFclose fclose and associate the file pointer with the
current MDL app.

dlmSystem_mdlTmpfile tmpfile and associate the file pointer with the
current MDL app.

dlmSystem_mdlFreopen freopen and associate the file pointer with
the current MDL app.

dlmSystem_callMdlFunction Call an MDL function.

dlmSystem_setFunction Designate a DLM user hook.
MicroStation MDL Programmer’s Reference Guide 20-29

Dynamic Link Modules
DLM Memory Functions
dlmSystem_getDLMPath

#include <dlmsys.fdf>

char *dlmSystem_getDLMPath
(
void *dlmID
);

Description The dlmSystem_getDLMPath function returns a pointer to a string that contains the
name file that contains the DLM.

The dlmID parameter is the DLM identifier provided on the call to the
initialize user function.

Returns dlmSystem_getDLMPath returns a pointer to a string.

DLM Memory Functions
dlmSystem_mdlMalloc, dlmSystem_mdlCalloc, dlmSystem_mdlRealloc and
dlmSystem_mdlFree have the same parameters and return values as malloc, calloc,
realloc and free. These functions associate the memory with the current MDL
application. When that application is unloaded, the memory is automatically freed. To
allocate and free memory without associating it with the current MDL application, use
malloc, calloc, realloc and free.

DLM File Functions
dlmSystem_mdlFopen, dlmSystem_mdlFclose, dlmSystem_mdlTmpfile and
dlmSystem_mdlFreopen have the same parameters and return values as fopen, fclose,
tmpfile and freopen. Except for dlmSystem_mdlFclose, which disassociates the
pointer, these functions associate the file pointer with the current MDL application.
When the application is unloaded, the file is automatically closed. To manipulate files
without associating them with the MDL application, use the standard functions fopen,
fclose, tmpfile and freopen.

initialize Called by MicroStation as the final step of
loading an MDL application that requires
DLM.

userHook_mdlUnload Called by MicroStation whenever an MDL
application is unloaded.

userHook_dlmUnload Called by MicroStation prior to unloading the
DLM that designated that hook.

Function Used to
20-30 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
DLM File Functions
dlmSystem_callMdlFunction

#include "dlmsys.fdf"

long dlmSystem_callMdlFunction
(
void *mdlDescP,
MdlFunctionP functionOffset,
... /* Parameters for the MDL function */
);

Description The dlmSystem_callMdlFunction function is used to call an MDL function.
mdlDescP points to the MDL descriptor for the function to be called.

functionOffset is an offset to the function to be called. This is an MDL
function pointer.

The variable argument list represents the arguments to be passed to the
MDL function. Up to 15 arguments may be passed. MicroStation
automatically determines the number and types of arguments expected by
the function. (It does this by examining the function’s header. This header
is actually part of the MDL program loaded by MDL. It is created
automatically by the MDL compiler.) Using this information, MicroStation
moves the arguments from MicroStation’s stack to the MDL application’s
stack and dispatches the function.

Returns dlmSystem_callMdlFunction returns the value returned by the MDL application. It
only returns integer values. If dlmSystem_callMdlFunction is not able to call the
function, then it returns 0. This only happens if the offset is 0, or the pointer to the
MDL descriptor is NULL.

dlmSystem_setFunction

#include "dlmsys.fdf"

int dlmSystem_setFunction
(
int functionType,
void *dlmID,
int (*funcP)()
);

Description The dlmSystem_setFunction function is used to designate a DLM user hook. The
functionType parameter specifies the type of hook. Valid values are
DLM_SYSTEM_MDL_UNLOAD and DLM_SYSTEM_DLM_UNLOAD.

dlmID identifies the DLM setting up the hook. This value was supplied by
MicroStation in the call to the DLMs initialization function.

funcP specifies the function to be called when the designated event
occurs. A value of NULL cancels the outstanding hook.
MicroStation MDL Programmer’s Reference Guide 20-31

Dynamic Link Modules
DLM File Functions
Returns dlmSystem_setFunction returns SUCCESS if it was able to set up the hook.
Otherwise, it returns ERROR.

initialize

int initialize
(
char *fileNameP,
char *taskIdP,
void *dlmID,
unsigned long initParameter
);

Description MicroStation calls initialize as the final step of loading an MDL application that
requires DLM. If the DLM is required by more than one MDL program, then the
DLM is only loaded once but the initialize function is called for each MDL program.

✍ The name “initialize” must be used for the initialization function.
MicroStation uses the DLMs symbol table to find the address of this
function.

fileNameP points to the name of the file that contains the MDL application
that is being loaded. The DLM is being loaded to resolve symbols for the
MDL application. Use the function dlmSystem_getDLMPath to get the name
of the file containing the DLM.

taskIdP points to the task ID of the MDL program being loaded.

dlmID is a pointer that uniquely identifies the DLM. The DLM should use
this value if it calls any functions that take a DLM ID as a parameter.
initParameter is the value specified with the %Version command in the
Dynamic Link Specification source file.

✍ If the initialize function aborts the load by returning a non-zero value,
it should aso display a meaningful error message. MicroStation does not
display an error message because it could not display anything more
meaningful than “initialize failed.”

Returns initialize may return 0 to allow the load to continue. If initialize returns a
non-zero value then the load of the MDL program is aborted. If no other MDL
programs have the DLM loaded, then the DLM is also unloaded.
20-32 MicroStation MDL Programmer’s Reference Guide

Dynamic Link Modules
DLM File Functions
userHook_mdlUnload, userHook_dlmUnload

void userHook_mdlUnload
(
void *mdlDescP,
unsigned char *taskIdP,
unsigned char *fileNameP
);
void userHook_dlmUnload(void);

Description MicroStation calls the userHook_mdlUnload user hook functions whenever an MDL
application is unloaded. Both the mdlDescP and the taskIdP identify the MDL
application being unloaded. Either parameter is enough to uniquely identify the
application. Both parameters are supplied just as a matter of convenience.
mdlDescP may or may not be the same as the current MDL descriptor. Never
depend on the value of the current MDL descriptor when this unload hook is
called.

✍ The DLM does not need to use the names userHook_mdlUnload and
userHook_dlmUnload. These hook functions are designated to MicroStation
by address only using dlmSystem_setFunction.

MicroStation calls the userHook_dlmUnload function prior to unloading the
DLM that designated that hook.

Returns Both of these hook functions are of type void. MicroStation ignores the return
values of both of these functions.

See Also dlmSystem_setFunction.
MicroStation MDL Programmer’s Reference Guide 20-33

20-34 MicroStation MDL Programmer’s Reference Guide

21 MDL Shared Libraries
Do you have an MDL function library which you would like other
applications to use without the overhead of using statically linked
libraries and the memory they require? Or maybe you have an existing
DLM which could be converted to an MDL application for use in
MicroStation PowerDraft and really need a non-native shared library.
MDL Shared Libraries can provide the capabilities you need without a
lot of extra tools and overhead.
Difference
An MDL Shared Library is an MDL application that can be dynamically linked with
other MDL applications at runtime. The MDL shared library has symbols (functions and
variables) which are exported and can be used by other MDL applications in much the
same way that MDL applications can use symbols exported by Dynamic Link Modules
(DLM).

The ability to use MDL shared libraries is available to a limited extent in MicroStation
5.0 and PowerDraft and completely in MicroStation.

Overview
MDL shared libraries provide a mechanism that faciliates the sharing of functions and
variables between different MDL applications in situations (i.e., while running under
MicroStation PowerDraft) where it is not possible to use DLMs.

This discussion references portions of a new MDL example called MDLSHARE which
demonstrates the use of MDL shared libraries. The source code for this example is
available on the Bentley BBS and FTP node and is also delivered with MicroStation as
an MDL example.

The following terms and phrases are referenced throughout this section:

System Resource - generic resources such as memory, file handles and symbol sets.

Resource Manager - resources allocated by the Resource Manager.

MDL task - the set of system resources corresponding to a loaded MDL application.
Every task has an MDL descriptor used for tracking system resources that belong to the
MicroStation MDL Programmer’s Reference Guide 21-1

MDL Shared Libraries
Overview
application. Every MDL application also has a task ID. The task ID is an external name
for the application.

Current MDL task - while MicroStation is executing there is always a current MDL
task. By default, all system resources allocated are associated with the current
application.

Client task - an MDL task which requires an MDL shared library.

Library task - the task associated with an MDL shared library. An MDL shared library
is also an MDL application and therefore has a task associated with it.

MDL context switch - occurs when MicroStation dispatches an MDL task. This
process includes selecting an MDL stack, setting the current MDL descriptor, and
calling the MDL interpreter to start executing the MDL task.

Switched and non-switched function call - a call to an MDL function is a switched
call if MicroStation’s context switching logic is involved in making the call. A call to an
MDL function is non-switched if MicroStation’s context switching logic is not involved
in making the call. When an MDL application calls a function using a normal symbolic
reference or using a function pointer, the call is a non-switched. When an MDL
application calls a function using mdlDialog_callFunction, the call is switched.

An MDL shared library is created by the MDL linker and is a standard MDL application
that also has a set of symbols that can be accessed by other MDL applications. When
an MDL shared library is loaded, an MDL task is created that corresponds to the
application. An MDL shared library can be loaded as an MDL application even when it
is not being used as a library.

An MDL application that uses a shared library can symbolically reference functions and
variables in the shared library, however, the shared library cannot reference any
symbols from the application that loads it. A client application can call a shared library
function via a symbolic reference, via a function pointer using normal function pointer
syntax, or via mdlDialog_callFunction. For both the symbolic reference and the
normal function pointer syntax, the call behaves as if the library was statically linked
with the application. MicroStation does not perform an MDL context switch. If the
shared library does anything that causes MicroStation to allocate a system resource,
then that system resource belongs to the MDL task that called the library. It does not
belong to the library's task. If the call is made via mdlDialog_callFunction, then an
MDL task switch does occur. Any system resources allocated by MicroStation belong to
the MDL shared library’s task, not the task that called it.
21-2 MicroStation MDL Programmer’s Reference Guide

MDL Shared Libraries
Creating an MDL Shared Library
Creating an MDL Shared Library
An MDL shared library is just an MDL application with symbols exported. A Dynamic
Link Specification (DLS) object file is included in the link step to specify the symbols
that are to be exported. Use the -e option to specify that the DLS object file specifies
symbols that are being exported. A DLS object file specified without -e is treated as an
object file. It specifies either an MDL shared library or DLM that is to be used by the
application being linked.

Linking an MDL Program with an MDL Shared Library
The MDL linker mlink must know how to resolve the symbols for the shared library. It
must know what symbols can be resolved at runtime. Since the shared library itself is
not linked with the MDL program, a DLS object file is used. The DLS object file
specifies the name of the dynamic link module, the list of symbols to be resolved from
the dynamic link module, and the version number of the library. All this information
can be linked with the MDL program so that MicroStation can use it at runtime to
dynamically load and link the shared library.

The syntax for Dynamic Link Specification files is described in the Dynamic Link
Specification Source Files section.

mlink treats DLS object files like libraries. It does not make the DLS object file part of
the program unless the DLS object file resolves symbols required by the MDL object
files. Since it is treated like a library, the DLS object file must appear in the link step
after any MDL object files that use functions or variables from the corresponding
shared library.

The Dynamic Link Specification object file must be specified for every link step that
may resolve symbols from that file. To simplify this, mlink uses the environment
variable MLINK_STDLIB. MLINK_STDLIB specifies a list of object files to be included in a
link step. The entries in the list are blank-separated. After processing the command
line, mlink gets the value of MLINK_STDLIB. If the environment variable MLINK_STDLIB
is defined, mlink interprets it as a list of files. This list is appended to the list of input
files specified in the command line.

Sample 1 below shows portions of the MDLSHARE application makefile illustrate the
MDL shared library build steps:

...
baseDir = $(_MakeFilePath)
privateInc = $(baseDir)
%include mdl.mki
%include mdlexmpl.mki
appName = mdlshare
MicroStation MDL Programmer’s Reference Guide 21-3

MDL Shared Libraries
Linking an MDL Program with an MDL Shared Library
sAppName = mdlsh
appName1 = mdltest1
sAppName1 = mdlt1
appName2 = mdltest2
sAppName2 = mdlt2
mdlshareObjs = (o)(appName).mo $(mdlLibs)ditemlib.ml
mdlshareRscs = (o)(appName).mp (o)(sAppName)cmd.rsc
mdltest1Objs = (o)(appName1).mo (o)(appName).dlo
mdltest1Rscs = (o)(appName1).mp (o)(sAppName1)cmd.rsc
mdltest2Objs = (o)(appName2).mo (o)(appName).dlo \

$(mdlLibs)ditemlib.ml
mdltest2Rscs = (o)(appName2).mp (o)(sAppName2)cmd.rsc

#---
Rule to generate a dlo from the dls source file
--
The default rule is being overriden to allow the definition of a
preprocessor symbol to control the exporting of runtime/symbolic
names via the $(dlsOpts) make symbol
--
.dls.dlo:

$(msg)
> $(o)temp.cmd
-o$@
$(dlsOpts)

%if defined (winNT) || defined (rs6000) || defined (macintosh)
||defined (os2)

-w$(moduleDef)
%endif

$%$*.dls
<
$(dlmspecCmd) @$(o)temp.cmd
~time

...

#---
Compile the Dynamic Load Specification
#---
(o)(appName).dlo: $(baseDir)$(appName).dls

...

#---
Link the MDL Applications
21-4 MicroStation MDL Programmer’s Reference Guide

MDL Shared Libraries
Linking an MDL Program with an MDL Shared Library
#---
Link the shared library making sure to mark the exported
files using the -e option
#---
(o)(appName).mp : $(mdlshareObjs) (o)(appName).dlo

$(msg)
> $(o)make.opt
$(linkOpts)
-e(o)(appName).dlo
-a$@
$(mdlshareObjs)
<
$(linkCmd) @$(o)make.opt
~time

#---
Link the client MDL Applications including the shared library DLO file
#---
(o)(appName1).mp : $(mdlTest1Objs)

$(msg)
> $(o)make.opt
$(linkOpts)
$(mdlTest1Objs)
-a$@
<
$(linkCmd) @$(o)make.opt
~time

(o)(appName2).mp : $(mdlTest2Objs)
$(msg)
> $(o)make.opt
$(linkOpts)
$(mdlTest2Objs)
-a$@
<
$(linkCmd) @$(o)make.opt
~time

...

Sample 1. Portions of MDLSHARE application makefile.
MicroStation MDL Programmer’s Reference Guide 21-5

MDL Shared Libraries
Linking an MDL Program with an MDL Shared Library
Loading an MDL Shared Library
An MDL shared library is loaded automatically if it is required by a loaded application.
Since an MDL shared library is like any other MDL program, it can also be loaded in
any manner other MDL applications may be loaded.

When MDL loads an application, the final step is to load any DLMs and MDL shared
libraries required by that application. This is a recursive process. Since an MDL shared
library is an MDL application, the MDL shared library may require other MDL shared
libraries. However, cyclical dependencies are not allowed. If MDL application app1
requires MDL application app2 as a shared library, then app2 can not also require
app1 as a shared library. MDL checks for this when loading the applications. If it
detects a cyclical redundancy, it aborts the load.

If an MDL application requires a shared library that is already loaded, then MicroStation
does not load the shared library again. MicroStation establishes a link between the
application being loaded and the previously loaded copy of the library.

After all of the required libraries are loaded for an application, MicroStation calls the
initialize function of each shared library used by the client application. (In the
current versions PowerDraft and MicroStation, MicroStation does not call the
initialize function. Client MDL applications must call the shared library’s initialize
function directly and the initialize function must be exported in the shared library’s
DLS. If any of the initialize functions return anything other than SUCCESS,
MicroStation aborts the load process. For each of the libraries, MicroStation calls the
initialize function regardless of whether the library was already loaded. That is, it
calls the initialize function each time there is a new attachment to the library, not
just when the library is loaded for the first time. To ensure that the shared library’s
initialize function is called for each client task as it is loaded, the initialize
function must be specified in the %Functions section of the shared library Dynamic
Link Specification file (see Defining the Shared Functions and Variables below).

Sample 2 below contains the MDLSHARE shared library initialize function.

/*---+
* name initialize
* author BSI 5/95
+--*/

Public int initialize
(
char *fileNameP, /* <= Client MDL Application */
char *taskIdP, /* <= Client MDL Task ID */
void *libDescP, /* <= Shared Library Descriptor pointer */
unsigned long initParameter /* <= Initialization parameters */
)
{

int rscFileH;
21-6 MicroStation MDL Programmer’s Reference Guide

MDL Shared Libraries
Linking an MDL Program with an MDL Shared Library
char outName[MAXFILELENGTH];
TaskInfo *taskInfoP, *taskP;
/* Initalize the environment for the client application:

1) Allocate a task block for the application in the
shared library tasks memory space

2) If not initialized, set up header pointer for task
list and set up the asynch function for handling all
client tasks terminating, otherwise hook new block
into list

3) Initialize task specific data including access to
shared library resources and access to the dialog
hook functions via the local dialog box interface */

share_printMsg(MSGID_Initialize, mdlSystem_getCurrTaskID());

/* Allocate new task block in the shared library's memory space */
if (!(taskInfoP =

(void*)mdlDialog_callFunction(libTaskInfo.mdlDescrP,
 share_allocTaskBlock, NULL)))

return -1;

share_printMsg(MSGID_TaskBlockP, taskInfoP);
/* Increment client task count and connect new task block into out

task list. */
taskCount++;
if (!initialized)
{

share_printMsg(MSGID_InitLibrary);
taskListP = taskInfoP;
initialized++;

/* Set up asynch function to handle notification of all clients
being unloaded */

mdlShare_setFunction(SHARED_LIB_NO_MORE_CLIENTS, libDescP,
share_noMoreClients);

}
else
{

share_printMsg (MSGID_LinkTaskInfo);
taskP = taskListP;
while (taskP->next)

taskP = taskP->next;
taskP->next = taskInfoP;
taskInfoP->prev = taskP;

}
/* Initialize task specific information including access to the

library's resources and dialog item hook function */
MicroStation MDL Programmer’s Reference Guide 21-7

MDL Shared Libraries
Linking an MDL Program with an MDL Shared Library
strcpy(taskInfoP->taskId, taskIdP);
taskInfoP->mdlDescrP = mdlSystem_findMdlDesc (taskIdP);
taskInfoP->passwordP = &localPassword[0];

/* The fully qualified path name of this shared library application
is used to open the resource files which are linked into this
library. These resources are available to any application which
uses this shared library. */

mdlResource_openFile(&taskInfoP->rscFileH, fullPathName, RSC_READ);
mdlDialog_hookPublish(sizeof(uHooks)/sizeof(DialogHookInfo),uHooks);
return SUCCESS;

}

If a library has a main function, that function is called when the shared library is
loaded. The main function is called before the initialize function is called. MDL
always uses the argv[1] argument to main to signal to an application why it was
loaded. When MicroStation loads an application as an MDL shared library, it sets
argv[1] to SHARED_LIB. The MDLSHARE shared library main function is shown in
Sample 3.

/*--
* name main
* authorBSI 5/95
--/

Public void main
(
int argc, /* => number of args in next array */
char *argv[] /* => array of cmd line arguments */
)
{

/* Save the fully qualified path name of the shared library
* for use in mdlResource_openFile during initialize() */

strcpy(fullPathName, argv[0]);

/* Open the resource file that we came out of */
mdlResource_openFile(&libTaskInfo.rscFileH, NULL, 0);

/* Load the command table */
mdlParse_loadCommandTable(NULL);

/* Publish our hook functions */
mdlDialog_hookPublish(sizeof(uHooks)/sizeof(DialogHookInfo),uHooks);
strcpy(libTaskInfo.taskId, mdlSystem_getCurrTaskID());

Sample 2. MDLSHARE shared library initialize function.
21-8 MicroStation MDL Programmer’s Reference Guide

MDL Shared Libraries
Unloading an MDL Shared Library
libTaskInfo.mdlDescrP = mdlSystem_getCurrMdlDesc();
strcpy(libTaskInfo.password, "mdlshare");
libTaskInfo.passwordP = &localPassword[0];

/* Init client application unload asynch function */
mdlSystem_setFunction(SYSTEM_ALL_MDL_UNLOADS,

share_clientTaskUnload);

/* Set up our own unload function */
mdlSystem_setFunction(SYSTEM_UNLOAD_PROGRAM,

share_sharedLibraryUnload);
}

Unloading an MDL Shared Library
MicroStation keeps an MDL shared library loaded as long as it is being used as a
library. If MicroStation must unload a shared, then it also unloads all MDL tasks that
require that library.

MicroStation does not automatically unload an MDL shared library when the last client
task is unloaded. In order to have a shared library unload after the last MDL client task
terminates, a shared library asynch function must be initialized using the
mdlShare_setFunction function specifying the SHARED_LIB_NO_MORE_CLIENTS event
type (this asynch function will be available for use in beta 2 of MicroStation) and the
library must explicitly unload itself from the asynch function. If this is not done, the
user or the shared library application itself must cause the unload of the library in some
other way.

When unloading an shared library, MicroStation first calls the library task's unload
hook. If the unload hook rejects the request to unload it, then there is no additional
processing. The fact that there was an aborted attempt to unload the shared library
does not affect any of the tasks that use the library. However, if the request to unload
the library continues then all MDL tasks that use the library must be unloaded.
MicroStation runs through the normal process for unloading these tasks. If an MDL task
has an unload hook, MicroStation calls the hook specifying
SYSTEM_TERMINATED_LIBRARY_UNLOADED as the parameter that specifies why the
application is being unloaded. An MDL task that is being unloaded for this reason
cannot abort the unload. That is, if an task is being unloaded because one of the
required libraries is being unloaded then MicroStation ignores the return value of the
task unload hook. Every client task is unloaded regardless of the hook's return value.

Sample 3. MDLSHARE shared library main functions.
MicroStation MDL Programmer’s Reference Guide 21-9

MDL Shared Libraries
Determining When an MDL Program is Unloaded
Determining When an MDL Program is Unloaded
It is often important to know when an MDL application is being unloaded. For
example, if an MDL shared library calls an MDL application’s user hook after the
application has been unloaded, the results will be unpredictable, and a crash may
occur. Also, if the MDL library is allocating and tracking resources for an MDL
application, then it must know to free those resources when the application is
unloaded.

The MDL shared library can use an unload hook to learn when an MDL application is
unloaded. To install an unload hook, the library must call mdlSystem_setFunction
with function type SYSTEM_ALL_MDL_UNLOADS. When an MDL application is unloaded,
MicroStation will call the unload hook passing the application’s MDL descriptor as a
parameter. Prior to calling mdlSystem_setFunction, the library should ensure that it is
running in the library task's context, instead of the client task's context. The easiest way
to do this is to call mdlSystem_setFunction from the library’s main entry point as
shown in Sample 3 above.

Sample 4 below shows the MDLSHARE unload processing:

/*---
* name share_clientTaskUnload
* authorBSI 05/95
--/

Private void share_clientTaskUnload
(
void *mdlDescP,
long exitReason,
unsigned char *taskIdP
)
{

TaskInfo *taskP=share_getTaskInfoP(mdlDescP);
/* Free task block for unloading MDL application */
if (taskP)
{

share_printMsg(MSGID_UnloadTask, taskP->taskId, taskP);
if (taskP->prev)

taskP->prev->next = taskP->next;
if (taskP->next)

taskP->next->prev = taskP->prev;
if (taskListP == taskP)

taskListP = taskP->next;
free(taskP);
taskCount--;
/* If no more client tasks, unload the library */
if (!taskCount)
{

21-10 MicroStation MDL Programmer’s Reference Guide

MDL Shared Libraries
Determining When an MDL Program is Unloaded
taskListP = NULL;
}

}
}

/*---
* name share_sharedLibraryUnload
* authorBSI 05/95
--/

Private int share_sharedLibraryUnload
(
void *mdlDescP,
long exitReason,
unsigned char *taskIdP
)
{

TaskInfo *taskP;
share_printMsg(MSGID_UnloadLibrary);
/* Free all client specific memory if still allocated */
if (taskListP)
{

while (taskP=taskListP)
share_clientTaskUnload(taskP->mdlDescrP,0L,taskP->taskId);

taskListP=NULL;
}
return SUCCESS;

}
/* --
* name share_noMoreClientsHook
* authorBSI 5/95
---*/

Private void share_noMoreClients
(
void
)
{

share_printMsg(MSGID_NoMoreClients);
mdlDialog_cmdNumberQueue(FALSE, CMD_MDL_SILENTUNLOAD,

libTaskInfo.taskId, TRUE);
}

Sample 4. MDLSHARE unload process.
MicroStation MDL Programmer’s Reference Guide 21-11

MDL Shared Libraries
Defining the Shared Functions and Variables
Defining the Shared Functions and Variables
This section describes the extensions made to the syntax used for Dynamic Link
Specification source files to accommodate MDL shared libraries (additional information
on the DLS can be found in the section entitled Dynamic Link Specification Source
Files in Chapter 20 of the MDL Programmer’s Guide). The dlmspec utility is used to
compile a Dynamic Link Specification source file producing a Dynamic Link
Specification object file. The object file is used at link time to specify information on
symbols that are to be resolved at runtime. The symbols can be resolved at runtime
either from a DLM or from an MDL shared library. Normal MDL object files (.mo files)
that need to have symbols resolved from a given Dynamic Link Specification object file
must appear in mlink’s command line prior to the Dynamic Link Specification file.

The %InterfaceType command defines the type of shared library interface being used.
The command is followed by Mdllib or DLM which identifies the shared library as
being an MDL application or DLM respectively. The case is not significant. Mdllib,
mdllib and MDLLIB are equivalent. The default is DLM. If %InterfaceType is not
specified, dlmspec assumes that the library is a DLM.

The %ModuleName command has been extended as well. The name of the file specified
after the command is used at runtime to determine the name of the file containing the
DLM or MDL shared library. The file name suffix usually is not specified. For DLMs, it is
system-specific. It is provided by MicroStation at runtime. The defaults are .out
(Intergraph workstation), .rex (PC), .so (SPARC) and .sl (HP700). For MDL shared
libraries, MicroStation uses the module name with .ma appended to look for the file.
Starting with MicroStation 95, MicroStation will also look for MDL shared libraries with
the extension .msl.

The DLS for the MDLSHARE shared library is presented in Sample 5:

/* Specify the version number */
%Version 0x551
%InterfaceType Mdllib
%ModuleName mdlshare
%Functions

initialize
sharelib_passwordHook(share_passwordHook)
sharelib_passwordDialog(share_passwordDialog)
sharelib_setPassword(share_setPassword)
sharelib_setPasswordVarP(share_setPasswordVarP)

%EndFunctions
%Variables

taskCount
%EndVariables
%End

Sample 5. DLS for MDLSHARE shared library.
21-12 MicroStation MDL Programmer’s Reference Guide

MDL Shared Libraries
Runtime Concerns
Runtime Concerns
The developer of an MDL shared library must understand the concepts of switched and
non-switched calls. This affects the operation of a lot of the MDL built-in functions.

For many types of hook functions, each MDL task may have one instance of the hook
specified. When the task specifies another value for that hook, the first value is
replaced. If an MDL library specifies a hook function, then it may be overriding the
hook function of the client task. Also, the library's hook function will be disabled if the
client task is disabled. In some cases, that may be the desired behavior. In other cases,
that behavior is unacceptable. There are a few solutions.

One solution is for the library to do a task switching prior to establishing the hook
function. To do so, the library must call one of its own functions using
mdlDialog_callFunction. When the library function calls one of it's own functions
using mdlDialog_callFunction, it causes MicroStation to do an MDL context switch,
switching from the client task's context to the MDL library's context. Then when the
library sets up the user hook, it is done using the library's context instead of the client
task's context. The context at the time the hook is set up also determines the context
when the hook is dispatched.

A second solution is for the library to save the call the client task's hook function as
part of the processing in its hook function. Most of the mdl..._setFunction functions
return the value of the old hook function. When the library sets it own hook function,
it can save the value returned by the mdl..._setFunction call used to establish the
hook. When MicroStation calls the library's hook function, the library's hook function
can use the saved function pointer to call the client task's hook function.

Sample 2 above shows an example of the use of the mdlDialog_callFunction
function in the initialize function. In this case, the shared library calls the function
mdlshare_allocTaskBlock to allocate memory in its own address space instead of the
client task’s address space.

initialize

int initialize
(
char *fileNameP,
char *taskIdP,
void *libDescP,
unsigned long initParameter
);

Description MicroStation calls the initialize function as the final step of loading an MDL
application that requires an MDL shared library. If the MDL shared library is
MicroStation MDL Programmer’s Reference Guide 21-13

MDL Shared Libraries
Runtime Concerns
required by more than one MDL program, then the shared library is only loaded
once but the initialize function is called for each MDL program.

MicroStation uses the client's MDL context when it calls the MDL shared
library.

fileNameP points to the name of the file that contains the client MDL
application. The name includes the entire path.

taskIdP points to the task ID of the client MDL task.

libDescP points to the library descriptor for the library's task. This field
should be used as the second parameter in the mdlShare_setFunction call
to set the asynch function to handle no more shared library client tasks.

initParameter is the value specified for %Version in the Dynamic Link
Specification object file that was linked with the client application.

Returns initialize may return 0 to allow the load to continue. If initialize returns a
non-zero value then the load of the MDL program is aborted.

userHook_mdlUnload, userHook_sharedLibNoMoreClients,
userHook_allMdlUnload

void userHook_mdlUnload
(
void *mdlDescP,
long exitReason,
unsigned char *taskIdP
);

void userHook_sharedLibNoMoreClients(void);

void userHook_allMdlUnload
(
void *mdlDescP,
long exitReason,
unsigned char *taskIdP
);

Description MicroStation calls the userHook_mdlUnload user hook functions whenever an MDL
application is unloaded. Both the mdlDescP and the taskIdP identify the MDL
application being unloaded. Either parameter is enough to uniquely identify the
application. Both parameters are supplied just as a matter of convenience.

When MicroStation unloads a client application, it checks each of the client
application's shared libraries to determine if there are any that do not have
more clients loaded. MicroStation calls the
userHook_sharedLibNoMoreClients hook function for each library that no
does not have any other clients.

MicroStation calls the userHook_allMdlUnload user functions every time
an MDL application is unloaded. It also calls these hooks if it has to abort
21-14 MicroStation MDL Programmer’s Reference Guide

MDL Shared Libraries
Runtime Concerns
an unload for some reason. Both mdlDescP and the taskIdP identify the
application being unloaded. They may be NULL if the user hooks are being
called after a failed attempt to load an MDL application.

MicroStation sets the MDL context to that of the library's task prior to
calling the hook functions.

Returns Both of these hook functions are of type void. MicroStation ignores the return
values of both of these functions.
MicroStation MDL Programmer’s Reference Guide 21-15

21-16 MicroStation MDL Programmer’s Reference Guide

22 Database Manipulation
The two sections in this chapter, “SQL Database Interface Toolkit” and
“Using MicroStation Database Servers from Initapps” tell you how to
use MDL to interface MicroStation to databases.
SQL Database Interface Toolkit
The SQL database interface toolkit is a set of tools which enable a developer to build
standard MicroStation interfaces to SQL databases. The SQL toolkit minimizes the
development necessary to support a new database.

Many of MicroStation’s capabilities utilize the database interface. Graphic functions,
interactive requests and MDL database run-time library function calls can generate
database service requests. By using the SQL toolkit in combination with tools from the
target database vendor, a developer will produce a “module” that will receive the
database service requests, complete the necessary processing and return any resulting
data to MicroStation. Building the module is simplified with tools that have a SQL
Application Programmers Interface, but the SQL Server can be developed without a
SQL API if the developer writes a parser for the vendor supplied tools.

Architecture
The developer supplied module that processes SQL requests has the same
requirements for all databases. Access is needed to:

• Embedded SQL/C tools provided by the database vendors.

• MDL for string resource management, error handling, user interface.

The developer supplied module consists of an MDL component and an external
program component.

The “SQL Toolkit” diskette is available by calling BSI Technical Support. The following
is the directory structure supplied on the “SQL Toolkit” diskette:

/MDL
dbload.mke
loader.mc
MicroStation MDL Programmer’s Reference Guide 22-1

Database Manipulation
SQL Requests
loadipc.mc
loadutil.mc
dbload.fdf

/SERVER
extmain.c
extipc.c
extutil.c
extmain.fdf

/RIS
usntris.mke
rissql.rc

The toolkit provides code for the mdl application dbload.ma (under the MDL
heading), code for the external components that are not database dependent (under
the SERVER heading), and an example of the implementation of the database
dependent portion using the RIS SQL utilities.

SQL Requests
MicroStation generates over 70 database (DB) requests that are handled by the MDL
application server.ma. The mdl application processes these requests and in turn can
generate one or more of the 18 database service (DS) requests. The requests are as
follows:

DS_DatabaseProfile DS_ProcessStatement
DS_OpenDatabase DS_OpenCursor
DS_CloseDatabase DS_FetchRow
DS_Terminate DS_CloseCursor
DS_DescribeDatabase DS_ProcessForm
DS_DescribeTable DS_GetErrorInformation
DS_DescribeColumn DS_AdditionalRequest
DS_CommitTransaction DS_DebugMode
DS_RollbackTransaction DS_CopyTable

The requests are defined in the database.h include file. In the discussion of each
individual request, the symbol => defines data that is sent from dbload.ma to ustnris
and the symbol <= defines data that is sent from ustnris to dbload.ma.

DatabaseService Structure
The DatabaseService structure consists of a header and a union of the database
service request structures. For example the DS_OpenDatabase request has a header
which is of type ServiceHeader, and is followed by the structure for an open request,
aptly named OpenDatabase.
22-2 MicroStation MDL Programmer’s Reference Guide

Database Manipulation
ServiceHeader
ServiceHeader

The service header consists of the following variables:

long status

=> status is initialized to zero.

<= status contains SUCCESS if the request was executed without errors or an
SQL_LOOKUP if the request resulted in an SQL error.

✍ If the request resulted in any error, the header is followed by an
ErrorInformation structure which contains the error code and the text of
the error message.

ULong type

<=> The type of request. This is the ULong that the DS requests are defined to equal.

ULong length

<=> The length in bytes of the service structure.

boolean isCallocd

<=> A boolean value indicating whether a pointer in the message structure has been
dynamically allocated (TRUE) or whether it has not (FALSE).

long callocdLength

<=> If isCallocd is TRUE then this will be the number of bytes allocated to the pointer in
the message structure.

DS_DatabaseProfile

The database profile is a structure whose information is set by the developer when the
toolkit is originally built. It should not need to change unless the design or underlying
database changes. A DS_DatabaseProfile message is issued by MicroStation when it
starts the server. This information is used by server.ma to tailor requests to the specific
database being used.

=> There is no data in a DS_DatabaseProfile message when it is sent from dbload.ma
to ustnris. The message consists of a header with length set to zero.

<= The DatabaseProfile structure is filled in with the appropriate information for the
underlying database.
MicroStation MDL Programmer’s Reference Guide 22-3

Database Manipulation
DS_OpenDatabase
The database profile consists of the following structures. These structures are defined
in database.h:

BrandProfile, AccessProfile, DataTypeProfile, SQLProfile, FunctionProfile,
TransactionProfile, FormsProfile and GraphicsProfile.

DS_OpenDatabase

This request tells the SQL Server which database to open.

char text[512]

=> Contains the text following a DB= statement. This data is not parsed by server.ma.
The developer should decide the format of the connect statement.

<= Currently there is no data returned from the SQL Server in the text variable. This is
left for future use.

DS_CloseDatabase

This request tells the SQL Server to close the database. This request has no data.

DS_Terminate

This request tells the SQL Server to do its cleanup and halt execution. This request has
no data.

DS_DescribeDatabase

This request gets a description of the database.

long descriptionLength

=> DescriptionLength is zero.

<= DescriptionLength is the number of characters in the description, including the NULL
character that terminates the buffer.

char *description

=> Description is a NULL pointer.

<= Description points to the NULL terminated character buffer of table names. Each
character string is NULL terminated. Note that there are two NULL characters at the end
of the buffer, one ending the last string, and one signifying the end of the entire buffer.

char databaseName[DB_DATABASE_NAME_SIZE]

<=> Not used. This is a place holder for future advancement.
22-4 MicroStation MDL Programmer’s Reference Guide

Database Manipulation
DS_DescribeTable
DS_DescribeTable

This request gets a description of a table.

long descriptionLength

=> DescriptionLength is zero.

<= DescriptionLength is the number of bytes in the description.

char *description

=> Description is a NULL pointer.

<= Description points to a descriptor message structure. The structure of a descriptor
message is described after the request descriptions.

char databaseName[DB_DATABASE_NAME_SIZE]

=> Not used. This is a place holder for future advancement.

char tableName[DB_TABLE_NAME_SIZE]

=> This is the name of the table to describe.

DS_DescribeColumn

This request gets a description of a column.

long descriptionLength

=> DescriptionLength is zero.

<= DescriptionLength is the number of characters in the description, including the NULL
character.

char *description

=> Description is a NULL pointer.

<= Description points to a one dimensional descriptor message structure. It contains a
descriptor message header, one column name, one type and one length.

char databaseName[DB_DATABASE_NAME_SIZE]

=> Not used. This is a place holder for future advancement.

char tableName[DB_TABLE_NAME_SIZE]

=> This is the name of the table the column is in.

char columnName[DB_COLUMN_NAME_SIZE]

=> This is the name of the column to describe.
MicroStation MDL Programmer’s Reference Guide 22-5

Database Manipulation
DS_CommitTransaction
DS_CommitTransaction

This request tells the SQL Server to commit transactions processed since the last
commit. This request has no data.

DS_RollbackTransaction

This request tells the SQL Server to rollback the transactions processed since the last
commit. This request has no data.

DS_ProcessStatement

This request processes SQL statements that are not select statements.

long statementLength

=> statementLength is the length of the SQL statement including the NULL character.

char *statement

=> statement points to a character buffer containing the SQL statement to process. It is
a NULL terminated character string.

DS_OpenCursor

This request opens a cursor for SQL statements that are selects.

long descriptionLength

=> descriptionLength is the length of the select statement.

<= descriptionLength is the length of the descriptor message.

char *description

=> description points to a NULL terminated character string with the select statement for
open cursor.

<= description points to a descriptor message structure. This is the result of the describe
on the select statement. It is sent to server.ma so that server.ma knows the format of
the data that will be returned.

long cursorID

=> Initialized to -1.

<= A number between [0..MAX_OPEN_CURSORS]. This indicates the cursor that was
opened. The fetch and close cursor operations should use this number as the
cursorID.
22-6 MicroStation MDL Programmer’s Reference Guide

Database Manipulation
DS_FetchRow
DS_FetchRow

This request fetches a row from the cursor identified by cursorID.

long rowLength

=> rowLength is 0.

<= rowLength is the number of bytes in row.

char *row

=> row is a NULL pointer.

<= row points to a buffer of values. One for each column selected.

long cursorID

=> The cursorID to fetch from.

short returnDataType

<=> Not Used.

DS_CloseCursor

This request closes the cursor identified by cursorID.

long cursorID

=> The cursorID to fetch from.

DS_ProcessForm

This request processes a form.

char arguments[256]

=> The arguments to the process form executable, executed from server.

char formName[256]

=> The name of the form to be executed.

long textMode

=> On DOS platforms, this will switch from a text monitor to a graphics monitor when
the screen form is executed.

long noStdOut

=> Redirects the IBM PCs standard out.
MicroStation MDL Programmer’s Reference Guide 22-7

Database Manipulation
DS_GetErrorInformation
DS_GetErrorInformation

This request gets the last SQL error code and text of the error message from the server.
This request is not currently used. When the external server encounters an error, it
returns this structure to dbload.ma. It is not necessary to go back to the external server
for this information.

long code

<= code is the error code that occurred in the server.

char message[MAX_ERROR_LENGTH]

<= message is a NULL terminated character string that contains the error message.

DS_AdditionalRequest

This request is produced by a call to mdlDB_additionalRequest. It allows a developer
to add requests to the toolkit. MaxMSLink in rissql.rc is an example of the an additional
request. MaxMSLink does not need to be supported by any developer supplied SQL
Servers, since in future revisions the processing done in the SQL server, will be moved
into server.ma.

long requestLength

<=> requestLength is the number of bytes in the request.

char *request

<=> request is a pointer to a developer defined request.

DS_DebugMode

This request changes the debug mode of the toolkit.

long mode

=> Indicates the state of debug.

DS_CopyTable

This request copies the structure, not the contents, of one table to another.

char fromTableName

=> The name of the table to copy from.

char toTableName

=> The name of the table to copy to.
22-8 MicroStation MDL Programmer’s Reference Guide

Database Manipulation
Descriptor Message Structure
Descriptor Message Structure

This structure is sent from ustnris to dbload.ma in an DS_OpenCursor request, a
DS_DescribeTable and a DS_DescribeColumn.

short columns

<= The number of columns in a returned row.

short rows

<= The number of rows in the packed buffer

short items

<= The total number of items packed.

short continued

<= This variable is no longer used, but remains for compatibility to
Version 4 MicroStation. It is always zero.

char data[1]

<= The packed buffer. The first items that are packed are the column names, the
second are the column types, and the third are the column lengths.

Communications
server.ma <=> dbload.ma

The SQL module is invoked by server.ma. When server.ma is started up, either from
the command window or at MicroStation startup as a DGN application, it looks for the
name of the mdl loader module in the environment variable MS_SERVER and starts up,
in the case of the delivered examples, dbload.ma. During startup, dbload.ma uses an
mdlDialog_… function to publish a pointer to its message handling function
handleDBRequest. By publishing the function, server.ma can execute
handleDBRequest with an mdlDialog_… function, passing in the published pointer and
the generated DS request as a parameter. Thus from the view of server.ma, all that is
necessary to execute a DS request is a call to handleDBRequest.

dbload.ma <=> ustnris

When dbload.ma is started by server.ma, it looks for the name of the external server
in the environment variable MS_DBEXT, sets up a message queue, and starts the external
server, passing the message queue identifier as a parameter. All communication
between dbload.ma and ustnris is through this message queue utilizing the external
program communication utilities provided by MDL. On DOS platforms this method is
only useful if the external program can be made into a PHARLap executable. If this is
not possible, then you may want to make the external program a Dynamically Linked
Module (DLM) or use shared memory.
MicroStation MDL Programmer’s Reference Guide 22-9

Database Manipulation
Session Debug
Session Debug
With the new toolkit there are several new debug commands. Here is a breakdown of
all of the debug commands and their effects:

Environment Variables
MS_SERVER

This is the task name of your mdl loader application. The task name for the example
mdl loader application provided in the SQL toolkit is defined as dbload in
dbload.mke.

MS_DBEXT

This is the name of your C executable. The name for the example RIS SQL / C
executable is ustnris.

MS_DBASE

This is the path to your C executable in MS_DBEXT.

MS_DBFLOAT

Since character data is returned to server.ma from the sql server, any float data read
from the database must be translated into character data. This variable is the sprintf
format string used to translate data read as floats. If the database server that you are
implementing returns character data or you choose to coerce it to character data, this
variable is not needed. For the provided RIS SQL server, “%.7g” is the default setting.

Command Effect

session debug on Turns debug on for server.ma.

session debug off Turns debug off for both server.ma and the SQL server.

session debug toggle Toggles the current server.ma debug session setting.

session debug ipc on Turns debug on for the packets being sent between
dbload.ma and the SQL server.

session debug ipc off Turns ipc debug off for the SQL server.

session debug ipc toggle Toggles ipc debug for the SQL server.

session debug external on Turns debug on for the SQL server.

session debug external off Turns debug off for the SQL server.

session debug external toggle Toggles debug for the SQL server.
22-10 MicroStation MDL Programmer’s Reference Guide

Database Manipulation
MS_DBDOUBLE
MS_DBDOUBLE

This variable is the sprintf format string used to translate data read as doubles. If the
database server that you are implementing returns character data or you choose to
coerce it to character data, this variable is not needed. For the provided RIS SQL server,
“%.16lg” is the default setting.

MS_LINKTYPE

This is the same environment variable that was needed in earlier versions of
MicroStation. It specifies the type of links that are understood by the server. The first in
the list is the type that will be written.

DBTYPE Resource
In the include directory there is a file called dbtype.r. If you are building a new
database interface to MicroStation using the SQL Toolkit you will need to add a line in
this file that defines the level, id, link type and the ascii id for your database. The file
explains these four variables.

You will then need to add this resource file to the server.ma mdl application. To do so,
first compile dbtype.r into a resource file using the rcomp utility. To create the
compiled resource file dbtype.rsc, a command such as the following should be used:

RCOMP -I<YOUR INCLUDE DIRS> DBTYPE.R

Then the rlib command can be used to add dbtype.rsc to server.ma. The command
should resemble:

RLIB -OSERVER.MA DBTYPE.RSC

✍ If you need the old server.ma you should make a copy of it since rlib
does not backup the old version when it creates the new one.

The new server.ma will now have knowledge of the new database type and be able to
manipulate the new database’s linkages.
MicroStation MDL Programmer’s Reference Guide 22-11

Database Manipulation
Overview
Using MicroStation Database Servers from Initapps
This section describes the procedures for using MicroStation database servers from
within a startup application (initapp). At the end of the section is a code sample
illustrating this process.

Overview
MicroStation database servers can be started for use by an initapp. Typically
MicroStation is configured for use with a database by designating the “server” MDL
application as a design file application (dgnapp). The server gets the value of the
MS_SERVER environment variable and starts the mdl loader. The MDL loader will
determine the name of the external server by getting the MS_DBEXT environment
variable and start the external server. When a MicroStation initapp is started, no design
file has been attached, so the dgnapps, including the server application, have not yet
been started.

Therefore, before using one of the database servers, mdlSystem_loadMdlProgram must
be called to load the MDL server server.ma. When mdlSystem_loadMdlProgram is
called it should be given the argument FRONTEND. This will notify the loader that it is
being loaded from an initapp. A loader must know that it is being started as an initapp
for the following reasons:

• The INFORMIX, RIS and XBASE servers write a type 66 element to the
design file with state information about the database session as a
result of the DB= keyin or the mdlDB_activeDatabase function. This
action should not be taken when the server is started as an initapp
since no design file has yet been attached.

• MicroStation sends several startup messages to the server when the
server is launched as a dgnapp. The FRONTEND argument will ensure
that the loader simulates this “handshaking.”

To complete the process of making the database server available from an initapp, log
on to the database by issuing a connect statement with mdlDB_activeDatabase.

If the initapp will put MicroStation in graphics mode, further considerations must be
made. If control will return to the initapp after MicroStation exits graphics, the server
connection must be reestablished as above from the reload hook if the database is to
be accessed from the initapp. This is necessary because MicroStation unloads all MDL
applications including the loader when exiting graphics and returning to the initapp.
When the reload function is finished with the server, it must unload the loader so the
server is properly terminated.

✍ The MicroStation database model has been revised in Version 5. The
Version 5 model makes the database system that is being used transparent
to a user or application writer. In previous versions an initapp would load
22-12 MicroStation MDL Programmer’s Reference Guide

Database Manipulation
Sample Database Initapp
the value of the MS_SERVER environment variable, oloader, ixloader,
urloader or dbloader depending on what database was being used. In
Version 5, an initapp loads an MDL server application, “server”, that will
take care of loading the appropriate mdl loader application. To upgrade an
initapp from an earlier version of MicroStation, in the call to
mdlSystem_loadMdlProgram replace the value of MS_SERVER or a hard
coded mdl loader with the MDL server application “server.”

Sample Database Initapp
The following code is presented as a sample skeleton initapp that uses a database
server. The main routine first initializes the database server and does any necessary
pre-processing of the database. The initapp then enters graphics, sets a reload function
and attaches a design file. The reload function is called when MicroStation exits
graphics. The database server is reloaded and any post-processing of the database is
done here. Finally, the server is terminated and MicroStation is exited.

/*---+
| |
| Copyright (C) 1992 Bentley Systems, Inc., All rights reserved. |
| |
| "MicroStation", "MDL" and "MicroCSL" are trademarks of Bentley |
| Systems, Inc. |
| |
| Limited permission is hereby granted to reproduce and modify |
| this copyrighted material provided that the resulting code is |
| used only in conjunction with Bentley Systems products under the |
| terms of the license agreement provided therein, and that this |
| notice is retained in its entirety in any such reproduction or |
| modification. |
| |
+---*/
/*-------------------------------- --------------------------------+
| initapp.mc |
| |
+---*/
/*---+
| Include Files |
| |
+---*/
#include <mdl.h>
#include <cexpr.h>
#include <system.h>
#include <global.h>
#include <dbdefs.h>
#include <dberrs.h>
MicroStation MDL Programmer’s Reference Guide 22-13

Database Manipulation
Sample Database Initapp
#include <userfnc.h>
/*---+
| Private Global Variables |
| |
+--*/
/*---+
| Major Public Code Section |
| |
+--*/
 /*---+
| name startupDatabaseServer |
| |
| Startup the database server from the initapp |
| |
| author BSI 6/93 |
| |
+--*/
startupDatabaseServer(void)
{

int status;
status=mdlSystem_loadMdlProgram(“server”, “server”, “FRONTEND”);
if (status != SUCCESS)

return(status);
/* connect to the database */
status=mdlDB_activeDatabase(“gis”);
if (status != SUCCESS)

return(status);
}
/*---+
| name reloadFunction |
| |
| This function is called by MicroStation after the |
| user closes the design file opened in main. |
| |
| author BSI 6/93 |
| |
+---*/
reloadFunction
(
int argc,
char *argv[]
)
{

char buffer[256];
int status;

/* The database server is unloaded by MicroStation when closing the
design file. If more work needs to be done with the database, the
22-14 MicroStation MDL Programmer’s Reference Guide

Database Manipulation
Sample Database Initapp
server must be reactivated. */
startupDatabaseServer();

/* do any necessary "cleanup" work with the database */
status=mdlDB_sqlQuery(buffer, “select owner from parcel

where mslink=1”);

/* unload the loader here so the server is properly terminated */
mdlSystem_unloadMdlProgram(“server”);

/* exit the MDL initapp and MicroStation will exit */
mdlSystem_exit(0, 1);

}
/*---+
| |
| name main |
| |
| author BSI 6/93 |
| |
+---*/
cmdName main()
{

char buffer[256];
int status;
startupDatabaseServer();

/* do any necessary setup work with the database */
status=mdlDB_sqlQuery(buffer, “select owner from parcel

where mslink=1”);
printf(“query result <%s>\n”, buffer);
mdlSystem_enterGraphics();

/* Set the function MDL should call when it needs to reload this
MDL application. This function will be called, for example, when
the user chooses to close the current design file. */

mdlSystem_setFunction(SYSTEM_RELOAD_PROGRAM, reloadFunction);
mdlSystem_newDesignFile(“cd9”);

}

MicroStation MDL Programmer’s Reference Guide 22-15

22-16 MicroStation MDL Programmer’s Reference Guide

23 Low Level DOS Interface Functions
(PC only)
This section describes MDL functions that let you access real mode
memory and perform software interrupts. The functions described in
this section are available only for MicroStation PC.
MDL and DOS
MDL provides the standard DOS interrupt functions, int86, intdos and bdos, to
provide access to standard DOS functions through software interrupts. It also provides
int86PassThrough for access to custom interrupt handlers.

The int86, intdos and bdos functions cannot be used for access to custom interrupt
handlers, because the Phar Lap DOS extender modifies the registers for these calls. For
DOS functions requiring addresses, the DOS extender uses a buffer in the real mode
address space. It copies the data into the buffer, modifies the parameters to point to the
buffer, reissues the interrupt, and then copies the data from the buffer after the
interrupt has been processed.

Phar Lap provides extensions to the standard DOS functions, which are available
through int 21h. These functions should be accessed with int86 or intdos.

The int86PassThrough function issues a software interrupt, and all specified register
values are passed to the interrupt handler unmodified.

The copyToReal function copies from protected mode memory to real mode memory,
and the copyFromReal function copies from real mode memory to protected mode
memory.

Please read devtools.txt, installed in the MDL directory, for the latest version
information on PC development tools.

Function Used to

int86 Load registers with the specified values and
perform the interrupt.

intdos Load registers with the specified values and
perform the interrupt.
MicroStation MDL Programmer’s Reference Guide 23-1

Low Level DOS Interface Functions (PC only)
Example
Example
See dosfunc.mc.

int86, intdos

#include <dos.h>

int int86
(
union REGS number, /* => interrupt number */
union REGS *beforeP, /* => input values */
union REGS *afterP /* <=> output values */
);

int intdos
(
union REGS *beforeP, /* => input values */
union REGS *afterP /* <=> output values */
);

Description int86 and intdos load registers with the specified values and perform the
interrupt. After the interrupt returns, the hardware registers are copied into the
union that afterP points to. The carry flag is expanded and stored in the union’s
cflag field.

intdos always uses int 21h. int86 uses the interrupt number specified in
number. Otherwise, these functions are the same.

These functions cannot be used to invoke interrupt handlers that return
the modified DS register. If the DS register is modified to point to more
information, use the built-in function int86PassThrough.

Returns The int86 and intdos functions return the value that the interrupt returns in EAX.

See Also int86PassThrough, bdos.

int86PassThrough Load registers with the specified values and
perform the interrupt.

bdos Place number in the AH register, dxreg in the
DX register and alreg in the AL register. It then
performs an int 21h.

segread Place current value of the segment registers
into the structure that segRegsP points to.

copyToReal Copy memory between the protected mode.

copyFromReal Address space and the computer’s real mode
address space.

Function Used to
23-2 MicroStation MDL Programmer’s Reference Guide

Low Level DOS Interface Functions (PC only)
Example
int86PassThrough

#include <dos.h>

int int86PassThrough
(
int number, /* => interrupt number */
int mode, /* => PROTECTED_MODE_INTERRUPT */
union REGS *dataRegsP, /* <=> AX, BX */
struct SREGS *segRegsP, /* <=> SS, DS */
Flags86 *flagsP /* <= flag register */
);

Description int86PassThrough loads registers with the specified values and performs the
interrupt. After the interrupt returns, the hardware registers are copied into the
areas that dataRegsP and segRegsP point to. The flags are stored in the word flagsP
points to.

If mode is PROTECTED_MODE_INTERRUPT, the interrupt is issued in protected
mode and control is given to a protected mode interrupt handler. If mode
is REAL_MODE_INTERRUPT, the interrupt is issued in real mode and control is
given to a real mode interrupt handler.

NULL can be passed for segRegsP or flagsP. If either of these registers is
NULL, the corresponding parameter is ignored.

int86PassThrough differs from int86 because the register values specified
in dataRegsP and segRegsP are not modified. They are passed directly to
the interrupt handler.

Returns The int86PassThrough function returns the value that the interrupt returns in EAX.

See Also intdos, int86, bdos, segread.

bdos

#include <dos.h>

int bdos
(
int number, /* => DOS function number */
int dxreg, /* => DX register */
int alreg /* => AL register */
);

Description The bdos function places number in the AH register, dxreg in the DX, and alreg in
the AL register. It then performs an int 21h.

Returns The bdos function returns the value that the operating system returns in AX to the
caller of bdos.

See Also int86, intdos, int86PassThrough.
MicroStation MDL Programmer’s Reference Guide 23-3

Low Level DOS Interface Functions (PC only)
Example
segread

#include <dos.h>

void segread
(
struct SREGS *segRegsP
);

Description The segread function places the current value of the segment registers into the
structure that segRegsP points to.

Returns The segread function is of type void. It returns no value.

See Also int86PassThrough.

copyToReal, copyFromReal

int copyToReal
(
int realSegment, /* => real mode segment */
int realOffset, /* => real mode offset */
void *protectedP, /* => protected mode address */
int count /* => bytes to copy */
);

int copyFromReal
(
void *protectedP, /* <=> protected mode address */
int realSegment, /* => real mode segment */
int realOffset, /* => real mode offset */
int count; /* => bytes to copy */
);

Description The copyToReal and copyFromReal functions copy memory between the protected
mode address space and the computer’s real mode address space.

Returns The copyToReal and copyFromReal functions return a count of bytes copied.
23-4 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
More than one-half of MicroStation users live in countries where English is not the
primary language. The number of such users is growing. However, most third-party
applications for MicroStation are designed for English-speaking users and cannot
properly handle foreign language text and country specific information. Acceptance of
English-only applications is reduced where native language versions of competing
software are available.

Enhancement of software for worldwide use is done in two stages: internationalization
and localization. Internationalization is done when an application is designed and
developed. The main objective of internationalization is modifying source code so that
a single executable can handle various languages. Language and culture-specific
information and assumptions are separated from the main program code and put into
external resource files and data tables. This allows for easy modification for different
languages. Localization is the subsequent process of translating the resource files and
customizing data files. It is usually performed by translators.

Many confuse internationalization with localization and misunderstand that it is just a
matter of translating menus and labels in dialog boxes. This is true to some extent, if
target languages are limited to Western European languages which share many
characters with English. But, it is untrue for many other languages that require
characters not found in standard English ASCII. For instance, some Asian languages
require several thousand characters to display text. Source code has to be designed to
handle these large numbers of characters. In many countries, culture-specific data, such
as date and time, are written or arranged in different orders and formats. Further,
different engineering standards exist for measurement and symbols.

The primary purpose of this chapter is to describe the necessary steps for
internationalizing MDL applications. It also explains how to configure MicroStation for
use with various languages. This document does not discuss how to translate resource
files and documentation. The subject of how to design applications to adhere to local
design and industrial standards is beyond the scope of this chapter. This is because
standards differ between fields.
MicroStation MDL Programmer’s Reference Guide A-1

Appendix A: Internationalization
Target Languages
Overview of Internationalization Issues
An internationalized application lets users enter, store, retrieve, manipulate and display
data in native languages, according to local customs and standards. MicroStation
handles most of the work for the entry of user data and display of characters for
different languages. An application developer's primary responsibility is string
processing, text element manipulation and messaging. Adapting to local standards and
translation of documentation are the responsibility of developers.

Target Languages
The amount of work required for internationalization depends on the target language.
Languages in the world can be grouped into three categories: European, Far Eastern
and Middle Eastern.

Many European languages (German, Spanish and Romanian) use Latin alphabets
containing fewer than 256 characters. In many cases, users' needs can be met by
separating text strings from program code into resource files and translating them.
Nevertheless, special attention must be paid to special characters, symbols, sorting
order and local standards.

Far Eastern Asian languages (Chinese, Japanese and Korean) use character sets
consisting of several thousand characters. It usually takes two bytes of data to represent
each of these characters internally; the standard assumption of “1 byte = 1 character”
for English text does not work for processing Asian text strings. In general, it takes
more work to develop applications capable of processing Asian languages.

Middle Eastern languages (Hebrew and Arabic) are bidirectional. The basic text is
written right-to-left. When mixed with numbers and English text, the direction of
writing changes within the same sentence. In addition, Arabic is context-sensitive,
meaning that the form of a character changes depending on the value of nearby
characters. Because MicroStation handles directionality and the number of characters is
generally less than 256 characters, applications designed for European languages also
generally work.

Recommendation
MicroStation's internationalization interface is continuously under development. This is
because international programming standards are still evolving. The extent of
MicroStation's support depends on the underlying operating system. Some platforms,
such as Windows NT, have extensive tools for foreign languages which MicroStation
can utilize. However, MicroStation's functions and applications are designed to be
portable across platforms so the same level of support cannot be extended to all
platforms.
A-2 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Character Encoding Methods
For example, some of the new wide character functions documented in the section
String Processing, are not supported on all platforms. The wide character functions are
designed to be usable with any language, but their functionality is currently limited to
Asian languages.

If you are already familiar with using wide character functions in another developing
environment, you should not convert all existing code to wide character format.
MicroStation itself has not been fully converted to the wide character format, and still
uses both multi-byte and wide character formats for processing foreign languages. You
should start with the conventional coding method and change only language-sensitive
parts using available tools. If you are not considering Asian markets, it might be a good
idea to wait for the finalization of the wide character functions explained in String
Processing.

Character Encoding Methods
Character encoding is the mapping of a character to a numeric value. The same
character value may represent different letters, ideographs, digits, symbols or control
functions depending on the selected encoding method. Encoding methods differ
between languages.

DEC Multinational ASCII Character Set
The ASCII character set was originally represented by 7 data bits, describing 128
characters. Extended ASCII code, represented by 8 bits, results in 256 characters and
contains the accented characters required by many Western European Latin-derived
languages. There are many variations of Extended ASCII encoding methods. Mapping
of alphabetical and numeric characters in the first 128 characters is identical in all
versions of Extended ASCII. However, mapping of accented characters and symbols
differ depending on the hardware platform and language of choice.

By default, MicroStation expects text displayed in dialogs, message fields and text
elements to be in DEC Multinational ASCII code, (Figure 2.1). This is because DEC
ASCII already contains characters for English and many European languages. The code
range, (0xC0 - 0xFF) encompasses accented characters and other special symbols.
Raster and vector fonts (international) delivered with MicroStation are encoded in DEC
Multinational ASCII. This works with many European languages (German, French,
Italian or Spanish).

One significant shortcoming of DEC Multinational ASCII is that accented characters for
all European languages are not contained, (Icelandic and Nordic). Further, characters
for non-Roman scripts (Russian, Greek, Hebrew and Czech) are not included. For these
languages, alternative coding schemes are selected with raster and vector fonts
encoded accordingly.
MicroStation MDL Programmer’s Reference Guide A-3

Appendix A: Internationalization
Character Translation Table
Character Translation Table
On different hardware platforms or operating systems, the same language can have
different character encoding methods. To keep compatibility of design files across
platforms, MicroStation uses one standard encoding method for a given language.
When text is imported or exported in and out of MicroStation, character values need to
be translated according to the standard encoding method.

For Western European languages, DEC Multinational ASCII is used for internal
encoding by MicroStation. On the PC, the English version of MS-DOS uses code page
437, (see ref. I. for more information on code page). Macintosh has its own encoding
method. Mapping accented characters in the range 128(0x80) - 255(0xff) is different for
each encoding method. For instance, the value of ü is 129(0x81) in DOS, 159(0x9f) in
Mac and 252(0xfc) in DEC. When a user enters characters from a keyboard,
MicroStation automatically translates the character values using a character mapping
table called the character translation table.

Default character translation tables are delivered in /CHARTRAN. Users can select
character translation tables in the user preference settings dialog box. If keyboard
layout or input language is changed on the operating system, the corresponding
character translation table needs to be selected. For some languages and platforms,
character translation is not required. For Western European languages, no translation is
A-4 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Asian Character Set
necessary on Unix and Microsoft Windows because their character encoding is very
similar to DEC Multinational ASCII.

Asian Character Set
Asian languages, (Chinese, Korean and Japanese) typically have many characters.
Approximate numbers of characters are as follows:

• Japanese: 6,400 characters

• Korean: 8,000

• Simplified Chinese (Mainland China): 6,800

• Traditional Chinese (Taiwan): 14,000

Due to the large numbers, at least 2 bytes or 16 bits are needed to represent a single
character.

In Japan, multiple encoding methods are used depending on platforms. For instance,
Shift-JIS coding is commonly used on PC platforms, while EUC (Extended UNIX Code)
is used on UNIX platforms. Internal processing of MicroStation is performed in Shift-

Figure 2.1. DEC multinational characters.
MicroStation MDL Programmer’s Reference Guide A-5

Appendix A: Internationalization
Codeset Handler
JIS. Therefore character values need to be translated by MicroStation from EUC to Shift-
JIS whenever text is displayed.

Codeset Handler
The codeset handler is part of the dialog box manager and handles foreign characters
primarily in Far Eastern languages. It accepts multi-byte strings and distinguishes
single-byte characters from double-byte characters based on a runtime configuration
resource file. The codeset handler also controls cursor movement as well as character
insertion and deletion of bidirectional text in Middle Eastern and Asian languages.

Both the codeset handler and the runtime configuration resource are usually included
in the MicroStation resource file ustation.rsc. The codeset handler can also be loaded
as a separate MDL program by setting the MS_CODESET environment variable.

The codeset handler is disabled for English and Western European languages. By
disabling the codeset handler, MicroStation will not display Asian text properly. For
development and testing of applications for Asian markets, it is necessary to obtain a
localized version of MicroStation and install the correct fonts. If you work on localized
operating systems (Chinese Windows NT and Japanese Macintosh OS), it is also
possible to enable the codeset handler with the SETLANG utility available from Bentley.

Unicode
The Unicode standard includes over 40,000 characters from the world's scripts in one
16-bit encoding range. This allows simultaneous display of multiple languages in one
design session. Also, string processing is simplified because all characters in the world
have unique code values.

Figure 2.2. Chinese characters.
A-6 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Data Input
MicroStation Version 5 has limited Unicode support; only text elements in design files
and font symbology resource files can have Unicode characters at this point. Because
the dialog box manager does not support Unicode, text displayed in dialog boxes is
limited to only one language.

Unicode fonts can be created by importing TrueType fonts, AutoCAD Release 13 shape
files and MicroStation cell libraries. TrueType fonts included in Microsoft Windows
typically include accented characters used in both West and East Europe. Some fonts
(Lucida Sans Unicode) have over 2000 characters including Hebrew, Cyrillic, Greek
and other various symbols.

Unicode text elements can be created using the wide character versions of
mdlText_xxx functions.

Data Input
Internationalized programs must be capable of processing and displaying all the
characters that users enter in their native language. A keyboard is most commonly used
for entering text. External files, including ASCII text files and resource files, are another
form of text input. Concerning keyboard input, no special processing is required in
applications because the Dialog Box Manager handles all the work. However, the
existing code may be modified if external data files are extensively used.

Keyboard Input
English characters are entered by striking keys on a keyboard. The shift-key
distinguishes between upper and lowercase letters. For typing the English alphabet,
one keystroke or the combination of a keystroke and the shift-key is sufficient.
However, many foreign languages require multiple keystrokes and/or special
applications to translate keystrokes for generating one character.

Input of European languages

For many European languages, a shifted or unshifted keystroke is insufficient to
produce accented characters because most keyboards only have approximately 100
keys. There are a variety of methods to input special characters that involve multiple
keystrokes. The first keystroke often represents an accent mark. It is saved by the
keyboard hardware or keyboard software and not sent to an application. After the
second keystroke, the two keystrokes are combined into a single character. This
process is usually performed by an input method application provided by the
operating system.
MicroStation MDL Programmer’s Reference Guide A-7

Appendix A: Internationalization
Input of Asian languages
Input of Asian languages

Input of Asian ideographic languages is much more complicated. In the case of
European languages, two or three keystrokes form a unique character. Due to the large
number of characters, the input of Asian languages require an intermediate application
interpreting between the keyboard and MicroStation. One method of text input is to
type phonetic characters from the same 100 key keyboard or with a special keyboard
having extra keys.

Because there can be many ideographic characters which match the same phonetic
characters, the input application requires a large dictionary and intelligence. The input
application may have to display a menu or pop-up dialog box so the user can choose
among ideograms with the same phonetic representation.

Getting Input Directly from Users

The input of both European and Asian languages are usually supported by the
underlying operating system or by a localized version of MicroStation. The output is
usually sent to a text field in the dialog boxes. Therefore, the user input is transparent
to MDL applications so long as applications obtain input from dialog box items.

Collecting input directly from users by mdlSystem_getChar or standard C functions
such as getch and getwc is discouraged. These functions will not work with input
method applications for Asian and some European languages.

Writing Direction

Writing direction varies among languages. In Latin-derived writing systems, characters
are entered left-to-right. Arabic and Hebrew writing systems have most characters
entered right-to-left.

In Asian languages, characters are traditionally written top-to-bottom as well as left-to-
right. Input into dialog box text fields is limited to the standard left-to-right direction,
while text elements in designs may be drawn top-to-bottom.

Arabic and Hebrew systems are bi-directional rather than purely right-to-left because
numbers and commonly intermixed foreign words are written left-to-right. MicroStation

Figure 2.3. Asian input method.
A-8 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Typing Code Values Directly
supports bi-directional keyboard input into dialog box text items. It can be enabled by
setting the following environment variable:

SET MS_RIGHTLOGICKB=ON

Pressing Ctrl-K is used to toggle between left-to-right and right-to-left directions. In
multi-line text fields, Ctrl-Y is used to display text in right-justified mode.

Typing Code Values Directly

Special characters and symbols can be entered using their numerical value. This is
useful for testing applications when the keyboard input application or a localized
operating system is unavailable. To type a character into dialog text items on the PC,
use:

ALT + KEY CODE

For instance, 'ç' can be created by typing:

ALT + 193

To type Asian double-byte characters, the ALT key needs to be released after the first
byte. For example, (two Japanese characters: = 138, 191, = 142, 154)
can be entered with:

ALT + 138, ALT + 191, ALT + 142, ALT + 154

A sequence of “\digit” can be converted into single byte representation using
mdlText_compressString. The fourth argument of the function needs to be set to
“INTERNATIONAL.” MicroStation's text editor uses this function and accepts a
sequence of back slashes ('\') followed by decimal character values. For example:

\77\105\99\114\111\115\116\97\116\105\111\110

is same as typing “MicroStation”.

To enter Asian double-byte text, character values need to be preceded by \253\255
which indicates a wide character string. The string is entered as:

\253\255\138\191\142\154

Figure 2.4. Display text in
right-justified mode.
MicroStation MDL Programmer’s Reference Guide A-9

Appendix A: Internationalization
File Input
Although the ALT method works only in localized versions of MicroStation, this
method works in the English version where the code set handler is disabled.

File Input
While the keyboard is the most obvious source of text input, MicroStation also
encounters characters from database files, UCM files and other text files. If these files
are encoded differently in different operating systems, character values must be
translated into MicroStation’s internal processing code, DEC Multinational ASCII or
equivalents, using the character translation table. While keystrokes are usually
translated automatically by MicroStation, it is the application's responsibility to apply
translation whenever a file is read. Character translation is applied by MicroStation if
external database files are accessed by MDL functions such as mdlDB_writeColumn and
mdlDB_readColumn.

To translate text from the external text format to DEC Multinational ASCII, use
mdlCharTran_nativeToInternalDisplay.

To translate a text string in MicroStation to the external text format, use
mdlCharTran_internalDisplayToNative. Both functions always return SUCCESS.

int mdlCharTran_nativeToInternalDisplay
(
char *outstring, /* <= output, may be same a input. */
char *instring, /* => input string to be translated */
int nBytes /* => size of output buffer */
)
int mdlCharTran_internalDisplayToNative
(
char *outstring, /* <= output, may be same a input. */
char *instring, /* => input string to be translated */
int nBytes /* => size of output buffer */
)

✍ Currently, there is not a good way to identify what encoding method is
used. An application can assume the input file was generated using the
same character encoding which the operating system uses.

✍ On UNIX platforms, character translation is usually not required, but if text
files are edited on PC and brought to UNIX, they must be translated.
A-10 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
String Processing
String Processing
An internationalized program must operate regardless of the method of encoding
characters in the user's language. Identifying and isolating language-sensitive code
sections is a major part of the programmer's work when internationalizing applications.
Applications designed for the English language fail to work with other languages
because of the character encoding, coding range and character size of English. For
instance, a program that ignores or truncates the eighth bit of every character will not
work in Europe, because the accented characters used in many European languages
are represented with numbers greater than 127. An application that assumes every
character is 8 bits long does not work in Asia where there are many thousands of
ideographic characters. Furthermore, it is not even safe to assume that characters are of
a uniform width, as 16-bit Asian characters are often mixed with 8-bit Latin characters
within the same string.

Coding Practices to Avoid
Common language sensitive coding practices can be summarized as below:

W Avoid making assumptions about the number of characters in a codeset
(no mapping tables with 128 or 256 entries).

for (ch=0; ch<128; char++) /* BAD */
display_character(ch);

int table[256]; /* BAD */

In this case, you should not assume the maximum number is 128 or 256. If the
maximum number is 128, accented characters in Europe will be ignored. If the
maximum is set to 256, Asian characters will be ignored. For Asian languages, the
maximum is difficult to predict because it depends on the application and target
language. Creating an array of size 14,000 (Maximum number for Taiwanese Big-5
encoding) is not recommended because all 14,000 characters are not necessarily used.
Making a for loop for 14,000 characters will be computationally expensive.

W Avoid assumptions about the size of characters. Use strlen only for
counting bytes in a string, not characters.

textWidth=tcb->textwidth * strlen(string); /* BAD */
stringP=(char*) malloc(sizeof(char) * strlen(string));/* GOOD */

In English, strlen returns both the number of characters and bytes in a string. But in
Asian double-byte text strings, strlen returns the number of bytes, and the number of
characters is usually less. To count the number of characters, wcslen, one of wide-
character functions, should be used.
MicroStation MDL Programmer’s Reference Guide A-11

Appendix A: Internationalization
Wide Character Processing
Here is another example of a common error. In this case, a back slash, '\', may be part
of a double-byte character in Asian text. To compare a character in a string, the string
needs to be first converted to a wide-character format.

/* BAD */
char *charP, string[MAX_LENGTH];
for (charP=string; *charP; charP++)

if (*charP == '\')
printf (“This is a back slash\n”);

/* GOOD */
MSWideChar *wCharP, wString[MAX_LENGTH];
mbstowcs(wString, string, MAX_LENGTH);
for (wCharP=wString; *wCharP; wCharP++)

if (*wCharP == '\')
printf (“This is a back slash\n”);

W Don't make character comparisons to hard-coded numeric values.

/* BAD */
if (value>0x20 && value<0x7f)

print_char=TRUE;

Use iswprint instead.

W Don't apply conversions to a character code using hard-coded values. For
instance, you should not use explicit values when converting characters to
lowercase or uppercase.

lower_case_char=value | 0x20; /* BAD */
upper_case_char=value & 0xdf; /* BAD */

The use of toupper and tolower is also discouraged. towupper and towlower should
be used instead.

Wide Character Processing
Applications and MicroStation normally exchange text data in multi-byte text format. A
multi-byte text string is a zero-terminated string where each character can be made up
of any number of bytes. An ASCII string is a special case of a multi-byte string where
the character size is always one byte. In Asian languages, character size varies from
one to two bytes, or occasionally more. A single string may contain a mixture of single
and double-byte characters. A multi-byte string is declared as type char.

Applications that need to process text should first convert multi-byte strings to wide
character strings before doing any locale-sensitive processing. Wide characters have
uniform width.
A-12 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Wide Characters
Locale is the definition of a user's environment that depends on language and cultural
conventions. A locale is roughly equal to a language, but there can be multiple locales
for one language. For instance, French-speaking people in Quebec would display the
date and time in a different manner than people in France. Some wide-character
functions return different results depending on a selected locale.

By making all characters uniform in width, the resulting string is easier to manipulate in
operations such as indexing, traversing (especially backwards) and size prediction
based on the number of characters.

Applications that simply receive a multi-byte string and output it without trying to
interpret the contents can remain unchanged. Programming code that receives or
returns a char * text value can remain unchanged if string processing is limited to
strcpy, strcat and strcmp.

Wide Characters

Wide characters are declared as type wchar_t in ANSI C and ISO C. The size of a wide
character depends on the underlying operating system and compiler. On UNIX
platforms such as HP and Sun, wchar_t is defined as an unsigned int, which is 4
bytes long. On Windows NT, it is defined as an unsigned short, which is 2 bytes long.
Two bytes of data is usually sufficient to represent the most commonly used Asian and
European characters.

MicroStation internally uses MSWideChar instead of standard wchar_t. The definition of
MSWideChar is found in an include file widechar.h, which is delivered with Version 5 of
MDL. wchar_t is by definition allowed to be one byte long, which is equal to char on
non-internationalized platforms. The MetaWare High-C compiler in the PC-DOS
environment internally defines wchar_t as char. Because this prevents the processing
of Asian characters, a wide character is defined as 2 bytes long and the name
MSWideChar is used to avoid confusion with wchar_t. Another reason MSWideChar is
used is to ensure compatibility of MDL code across different platforms.

For the convenience of developers who want to convert existing C programs to
MicroStation, wchar_t can be also used inside MDL. wchar_t is defined to be equal to
MSWideChar in include file wchar.h, which is delivered with MDL. In addition to
wchar_t, ANSI C and ISO C define wctype_t and wint_t. These two type definitions
are redefined as MSWideType and MSWideInt (see widechar.h).

Conversion of String Format

Text generated by MicroStation’s dialog box and external sources (e.g., ASCII text files)
is normally encoded as a series of multi-byte characters. To process these internally,
they must be converted to wide character representation. Even if applications are
intended for only single-byte languages, this conversion will be useful because some of
the wide character functions (explained in Wide Character Processing) provide locale-
sensitive processing such as sorting, time, and data functions.
MicroStation MDL Programmer’s Reference Guide A-13

Appendix A: Internationalization
Conversion of String Format
✍ This statement is currently true only under the Windows NT environment.

After all the processing is complete, resulting strings should be converted back to
multi-byte representation for output. While converting strings between multi-byte
format and wide character format may sound inefficient, it has to be done until the
Dialog Box Manager handles strings in wide character format.

MDL has the following built-in functions for converting between multi-byte format and
wide-character format. These functions are defined in stdlib.h, delivered with MDL.

✍ In the future, all mdlDialog_xxx functions will return strings in wide-
character format so that no conversion will be required.

mbstowcs
size_t mbstowcs(MSWideChar *wcs, char *mbs, size_t n);

This function converts a sequence of characters from the array pointed to by mbs into
a sequence of corresponding wide character codes. The third argument, n, is the size
of the output array in the number of wide characters. The function returns the number
of wide characters stored in wcs.

wcstombs

size_t wcstombs(char *mbs, MSWideChar *wcs, size_t n);

This wcstombs function converts a sequence of wide character codes pointed to by wcs
to its multi-byte character representation and stores the results in the array pointed to
by mbs. The third argument, n, is the size of the output array in the number of bytes.
The function returns the number of bytes stored in mbs.

mbtowc

int mbtowc(MSWideChar *wchar, char *mbchar, size_t maxLen);

This function determines the number of bytes that constitute the character pointed to
by mbchar, converts this to the corresponding wide character representation and stores
the result in the wide character pointed to by wchar. The third argument is the size of
the output buffer, wchar. The number of characters converted is returned.

wctomb

int wctomb(char *mbchar, MSWideChar *wchar);

This function converts the wide character, wchar to its multi-byte character
representation and stores the result in the array pointed to by mbchar. The function
returns the number bytes in the output string.
A-14 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Wide Character Functions
mblen

int mblen(char *s, size_t n);

This function determines the number of bytes constituting the character pointed to by
s. The function evaluates the input string up to n bytes which is the maximum number
of bytes per character.

Wide Character Functions

International organizations (ISO and X/Open) have defined a set of wide-character
functions known as the Worldwide Portability Interfaces (WPI). Wide character
functions are sensitive to locale.

In other words, they behave differently depending on the language of choice.
Although some functions are unique to WPI, a majority of them have cousins in the
standard C libraries that have similar functionality except that they are not sensitive to
locale. The functionality of wide character functions depend on the underlying
operating system. Because not all the operating systems on which MicroStation runs
support these functions, some are sensitive only to English ASCII. The most useful and
functional among them are those for character classifications, case conversion and
string processing. Function prototypes of these functions are defined in mswchar.fdf.

Locale Initialization

According to the WPI, an international environment and locale needs to be selected by
executing the setlocale function prior to using any of the wide character functions.

setlocale

char *setlocale(int category, char *locale);

The setlocale function is designed to change or query the program's international
environment. The first argument, category, specifies all or part of the program locale
defined in the header file locale.h. The value LC_ALL sets the entire locale.

The locale argument is a pointer to a character string containing the name of locale.
The value “C” specifies the minimal environment for C language translation. The value
“” specifies that the locale should be initialized to the system default locale. NULL is
used to direct the function to query the current locale setting and return its name.

In Version 5, this function is available for MDL applications. But it currently has effects
only on a limited number of platforms, Windows NT and HP700 workstations. On the
other platforms, the wide character functions behave as if setlocale(LC_ALL, “”) were
called.
MicroStation MDL Programmer’s Reference Guide A-15

Appendix A: Internationalization
Locale Initialization
If your application is running under the French version of MicroStation, wide character
functions are sensitive to French. If it is running with the Chinese version, the functions
will behave in the Chinese manner.

Therefore, MDL applications do not need to call this function until all underlying
operating systems support this function. When all operating systems fully support this
function, an MDL function will be able to handle multiple languages in one session;
handling German and Japanese together.

Character Classification
iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct,
iswspace, iswupper, iswxdigit

These functions are internationalized versions of the ctype functions isalnum,
isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace and
isxdigit respectively, except they accept a wide character as input.

These character classification functions are defined as macros in widechar.h.

It is important to notice that the result of character classification in foreign languages is
not necessarily the same. For instance, in an English language locale supporting the
ASCII codeset, only the characters a-z and A-Z would be classified as alphabetic. In a
Japanese environment, alphabetics may also include double-byte characters.

String Functions
wcscat, wcschr, wcscmp, wcscpy, wcscpn, wcslen, wcsncat, wcsncmp, wcspbrk, wcsrchr,
wcsspn, wcstok, wcsstr

These functions are wide character versions of strcat, strchr, strcmp, strcpn,
strlen, strncat, strncmp, strpbrk, strrchr, strspn, strtok and strstr respectively.
These are most frequently used by MicroStation internally along with the mbstowcs and
wcstombs functions.

Case Conversion
 towlower, towupper

These case conversion functions are equivalents of tolower and toupper. Wide
character versions of strupr and strlwr are not defined in WPI. Therefore, if an
equivalent of strupr is necessary, you can add a simple routine like below:

MSWideChar *wcsupr(MSWideChar *wstring)
{

A-16 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Locale Initialization
MSWideChar *wcP;
for (wcP=wstring; *wcP; wcP++)

*wcP=towupper(*wcP);
return (wstring);

}

Character Collation
wcscoll, wcsxfrm

The wcscoll and wcsxfrm functions compare strings according to the local custom of
the selected locale. The two functions are functional only on the HP700 workstation.
On other platforms, wcscoll is the same as wcscmp and wcsxfrm.

wcscoll

int wcscoll(MSWideChar *ws1, MSWideChar *ws2);

The wcscoll compares sorting order of two strings according to the local custom of a
selected locale. It is similar to wcscmp and strcmp. But both wcscmp and strcmp simply
compare the numerical values of characters in two strings. The function wcscoll has
more intelligence. For instance, consider the following data:

abcdef
abc
abcd
hot
cheque
cull
LLLLLL
ABCDE
lot
czech
cult
efgh
chess
llllll
abcde
ábcd
àbcd

If strcmp or wcscmp is used, the result of sorting would be as follows:

ABCDE
LLLLLL
abc
abcd
abcde
MicroStation MDL Programmer’s Reference Guide A-17

Appendix A: Internationalization
Locale Initialization
abcdef
cheque
chess
cull
cult
czech
efgh
hot
lllll
lot
ábcd
àbcd

But this is not the correct sorting order in French and Spanish. The wcscoll function
would sort the same data as follows if the selected locale is French:

abc
abcd
ábcd
àbcd
ABCDE
abcde
abcdef
cheque
chess
cull
cult
czech
efgh
hot
LLLLLL
llllll
lot

In Spanish:

abc
abcd
ábcd
àbcd
ABCDE
abcde
abcdef
cull
cult
czech
cheque
chess
A-18 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Locale Initialization
efgh
hot
lot
LLLLLL
llllll

In both languages, the ordering of accented characters ('à', 'á') is after the base
character ('a'). In Spanish, 'ch' and 'll' are treated as one collating symbol and placed at
the end of 'c' and 'l', respectively.

wcsxfrm

size_t wcsxfrm(MSWideChar *ws1, MSWideChar *ws2, size_t n);

The wcsxfrm function transforms a wide character string pointed to by ws2 and places
the result in the array pointed to by ws1. The transformation is such that if the wcscmp
function is applied to two transformed strings, the result is the same as if the strings
had been compared using wcscoll. The third argument, n, is the size of the output
string, ws1, including a terminating null wide character. The function returns the
number of characters stored in ws1.

Date and Time Functions
wcsftime

WPI defines wcsftime, which is an internationalized version of strftime. The locale
affects the display format of date and time. For example, the display format of a date in
the English locale is:

Month/Day/Year

For the French locale, it would be:

Day/Month/Year

wcsftime
size_t wcsftime(MSWideChar *wcs, size_t maxsize, char *format,

struct tm *timeptr);

✍ The wcsftime function is functional only on HP700 workstations. On other
platforms, the function is not sensitive to locale or returns the same result
in wide character format as strftime does. Therefore, it is recommended
to instead define a format string in an external resource file and construct
date and time using sprintf and numbered argument lists as explained in
Messages and Resource Files.
MicroStation MDL Programmer’s Reference Guide A-19

Appendix A: Internationalization
Limitations
Printing and Scanning Functions [not supported]
fwprintf, wprintf, swprintf, vfwprintf, vwprintf, vswprintf, fwscanf, wscanf and
swscanf

These printing and scanning functions are wide character versions of fprintf, printf,
sprintf, vfprintf, vprintf, vsprintf, fscanf, scanf and sscanf respectively. These
functions are currently not supported by MDL.

Number Conversion Functions
wcstod, wcstol, wcstoul

These number conversion functions are wide character versions of strtod, strtol and
strtoul.

Input and Output Functions [not supported]
getwc, getwchar, getws, fgetwc, fgetws, fputwc, fputws, putwc, putwchar, putws,
ungetwc

These input and output functions are wide character versions of getc, getchar, gets,
fgetc, fgets, fputc, fputs, putc, putchar and ungetc. It is not recommended to use
these functions from MDL. The functions that perform input operations will not work
with foreign languages because input method applications often interact with the
Dialog Box Manager. See “Getting Input Directly from Users” on page A-8. The output
functions will not work unless the underlying operating system uses the same
encoding method. MDL applications should perform character input and output via the
dialog boxes.

Limitations

A string constant or a character constant in wide character format is currently not
supported by MDL compilers.

In the conventional string processing, string and character constants can be used as:

char *string = “regular string”;
char ch = 'A';
sprintf(string, “value = %d”, value);
strcat(string, “32”);

In a wide character context, the same lines can be rewritten as:

wchar_t *wString = L“wide character string”;/* not supported */
wchar_t wch = L'A'; /* not supported */
swprintf(wString, L“value = %d”, value); /* not supported */
A-20 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Performance Considerations
wcscat(wString, L"32"); /* not supported */

Here, the actual strings in quotes are in multi-byte format. The L“.....” syntax converts
the format to wide character format. Unfortunately, the L “.....” syntax is not currently
supported.

To work around this problem, all format strings should be saved in an external
resource file. Then, format strings should be converted to wide character format using
mbstowcs. This should not cause too much inconvenience because hard-coded strings
are to be generally avoided.

Assignment of wide character constants can be done in the conventional method
without the L prefix as long as the constant is one-byte long.

wchar_t wch = 'A';

Character constants of double-byte length are rarely used.

Performance Considerations

There exists an efficiency versus portability issue which should be kept in mind.
Currently, the Dialog Box Manager and external data sources use multi-byte text
format. Converting multi-byte strings to wide-character format, and then converting
back to multi-byte format for output can be inefficient. The processing of Asian
characters can be slower than the processing of English and other European languages.
Although not desirable, if performance is your priority, it is possible to create two
functions. The first function would do standard ASCII processing and the other would
handle wide-character processing. An MDL global variable, multiByteCharsPossible,
tells us if Asian double-byte text is used. For example:

if (multiByteCharsPossible)
{

mbstowcs(wString, string, MAX_STRING_LENGTH);
processWideString(wString);
wcstombs(wString, string, MAX_STRING_LENGTH);

}
else

processNormalString(string);

Programming Example

Many examples distributed with MicroStation work with English and European
languages, but fail to work with Asian languages. For instance, the CHNGTXT example
fails in compareTextStrings when strstr is applied to Asian double-byte character
strings. Suppose there are two Japanese text strings:

1-a) (0x8c, 0x95) (0x93, 0xb9)
MicroStation MDL Programmer’s Reference Guide A-21

Appendix A: Internationalization
Programming Example
2-a) (0x94,0x92) (0x8c,0x8c) (0x95,0x61)

The first string consists of two double-byte Kanji characters and means “fencing”. The
second consists of three double-byte Kanji characters and means “leukemia”. If a user
wants to replace the first character, (0x8c,0x95), with (0x8f,0x5f), strstr
returns a correct result for the first string.

1-b) (0x8f,0x5f) (0x93,0xb9) which means “Jyudo(wrestling)”.

But the strstr matches (0x8f,0x5f) with a wrong part of and
converts the string into a series of meaningless characters although no replacement
should take place:

2-b) (0x94,0x92) (0x8c,0x8f), _(0x5f) a(0x61)

✍ The third double-byte character, BYO, was converted to two ASCII
characters.

This error happens because strstr does not recognize character boundaries and
matched a double-byte character to the second byte of and the first byte of .

Another error can occur with the strupr function in compareTextStrings where part
of a double-byte character may be recognized as a single ASCII character. Subsequently
it is converted to an incorrect double-byte character. For instance, strupr will
incorrectly convert (0x8a,0x65) (meaning = “each”) to (0x8a,0x45) (meaning
= “world”).

These problems can be avoided by first converting strings into wide character
representations. The changeTextElement and compareTextStrings functions in
CHNGTXT.MC have been rewritten using some of the wide-character functions
explained earlier.

The original version of changeTextElement and compareTextStrings in
CHNGTXT.MC look like:

/*--+
| |
|name changeTextElement |
|author BSI 8/89 |
| |
+---*/
Private int changeTextElement
(
MSElementUnion *element,
int doChange
)
{

A-22 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Programming Example
char tempText[256],oldText[256],newText[256],message[512];
char *strP, *start, *end;
int status, stringChanged=FALSE, strlenNewString;
int retval=SUCCESS, nChars, nEDFs;

if (mdlElement_getType(element)!=TEXT_ELM
|| mdlText_extractString(oldText,element))
return ERROR;

if (mdlText_extract(NULL, NULL, /* origin, userOrigin */
 &nEDFs, NULL, /* numEdfields, edFields */

oldText, /* string */
NULL, NULL, NULL, NULL, NULL, element) != SUCCESS)

return ERROR;
if (*chTextInfo.oldString==0)

return ERROR;
nChars=strlen(oldText);
strlenNewString=strlen(chTextInfo.newString);
strcpy(newText, oldText);
strP=newText;
while (!compareTextStrings(strP,chTextInfo.oldString,&start,&end))
{
if ((strlen(newText)+strlenNewString+strlen(end))>=sizeof(newText))
{

retval=ERROR;
sprintf(message, “Unable to insert '%s' after '%s'”,
chTextInfo.newString, newText);
mdlDialog_openAlert(message);
break;

}
strcpy(tempText, end);
strcpy(start, chTextInfo.newString);
if (tempText[0])

strcat(strP, tempText);
strP=start + strlen(chTextInfo.newString);
stringChanged=TRUE;
}
if (!stringChanged)

return ERROR;
if (nEDFs && strlen(newText) < nChars)
{

int nNewLen=strlen(newText);
strP=newText+nNewLen;
while (nNewLen<nChars)
{

*strP = ' ';
++strP;
++nNewLen;
MicroStation MDL Programmer’s Reference Guide A-23

Appendix A: Internationalization
Programming Example
}
*strP = '\0';

}
if (doChange)

mdlText_create(element, element, newText, NULL,
NULL, NULL, NULL, NULL);

return retval;
}
/*--+
| |
|name changeTextStrings |
|author BSI 8/90 |
| |
+--*/
Private int compareTextStrings
(
char *searchStr,
char *patternStr,
char **start,
char **end
)
{

static char *space = “”;
char searchBuf [256], patternBuf [256];

/*---+
 Prepare for Whole Word search if necessary
+--*/

searchBuf[0]=0;
patternBuf[0]=0;
if (chTextInfo.wholeWords)
{

strcat(searchBuf, space);
strcat(patternBuf, space);

}
strcat(searchBuf, searchStr);
strcat(patternBuf, patternStr);
if (chTextInfo.wholeWords)
{

strcat(searchBuf, space);
strcat(patternBuf, space);

}
/*---+
 Prepare for case insensitive search if necessary
+--*/

if (!chTextInfo.matchCase)
{

strupr(searchBuf);
A-24 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Programming Example
strupr(patternBuf);
}

/*---+
 Attempt to match substrings
+--*/

if ((*start = strstr searchBuf, patternBuf)) == NULL)
return ERROR;

*start = searchStr+(*start-searchBuf);
*end = *start+strlen(patternStr);
return SUCCESS;

}

Wide character versions of the same functions are listed below. changeTextElementW is
the wide character version of changeTextElement. compareTextStringsW is the wide
character version of compareTextStrings.

/*--+
| |
|name changeTextElementW |
|author BSI 8/89 |
| |
+---*/
Private int changeTextElementW
(
MSElementUnion *element,
int doChange
)
{

MSWideChar tempTextW[256];
MSWideChar oldTextW[256]; /* old string of text element */
MSWideChar newTextW[256]; /* new string of text element */
MSWideChar oldStringW[128]; /* old string in dialog box */
MSWideChar newStringW[128]; /* new string in dialog box */
MSWideChar *wcsP, *start, *end;
char newTextA[256]; /* ASCII version of newTextW */
char message[512];
int status, stringChanged=FALSE, strlenNewString;
int retval=SUCCESS, nChars, nEDFs;
TextEDParam edParam;
if (mdlElement_getType(element) != TEXT_ELM

|| mdlText_extractString(oldTextW, element))
return ERROR;

if (mdlText_extractWide(oldTextW, NULL, NULL, NULL, NULL, NULL,
&edParam, element) != SUCCESS)
return ERROR;

if (*chTextInfo.oldString==0)
return ERROR;

mbstowcs(oldStringW, chTextInfo.oldString, 128);
MicroStation MDL Programmer’s Reference Guide A-25

Appendix A: Internationalization
Programming Example
mbstowcs(newStringW, chTextInfo.newString, 128);
nChars=wcslen(oldTextW);
strlenNewString=wcslen(newStringW);
wcscpy(newTextW, oldTextW);
wcsP=newTextW;
while (!compareTextStringsW(wcsP, oldStringW, &start, &end))
{

if ((wcslen(newTextW)+strlenNewString+wcslen(end))
*sizeof(MSWideChar) >= sizeof(newTextW)/sizeof(MSWideChar))

{
retval=ERROR;
mbstowcs(newTextA, newTextW, 256);
sprintf(message, “Unable to insert '%s' after '%s'”,

chTextInfo.newString, newTextA);
mdlDialog_openAlert(message);
break;

}
wcscpy(tempTextW, end);
wcscpy(start, newStringW);
if (tempTextW[0])

wcscat(wcsP, tempTextW);
wcsP = start+wcslen(newStringW);
stringChanged=TRUE;

}
if (!stringChanged)

return ERROR;
if (edParam.numEDFields && wcslen(newTextW) < nChars)
{

int nNewLen=wcslen(newTextW);
wcsP=newTextW+nNewLen;
while (nNewLen<nChars)
{

wcsP = ' '; / can't use L' ' here */
++wcsP;
++nNewLen;

}
*wcsP = '\0';

}
if (doChange)
mdlText_createWide(element, element, newTextW, NULL, NULL,

NULL, NULL, NULL);
return retval;

}
/*--+
| |
|name wcsupr |
|author BSI 8/90 |
A-26 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Programming Example
| |
+---*/
Public MSWideChar *wcsupr
(
MSWideChar *wstring
)
{

MSWideChar *wcP;
for (wcP=wstring; *wcP; wcP++)
{

*wcP=towupper(*wcP);
}
return (wstring);

}
/*--+
| |
|name compareTextStringsW |
|author BSI 8/90 |
| |
+---*/
Private int compareTextStringsW
(
MSWideChar *searchStr,
MSWideChar *patternStr,
MSWideChar **start,
MSWideChar **end
)
{

static MSWideChar space[2];
MSWideChar searchBuf [256], patternBuf [256];

/*---+
 Initialize space string, this is not very good
 MSWideChar *space= L“”; does not work!
 In ASCII version, it was static char *space = “” ; did all.
+--*/

space[0]=' '; /* space */
space[1]='\0'; /* terminate string */

/*---+
 Prepare for Whole Word search if necessary
+--*/

searchBuf[0]=0;
patternBuf[0]=0;
if (chTextInfo.wholeWords)
{

wcscat(searchBuf, space);
wcscat(patternBuf, space);

}

MicroStation MDL Programmer’s Reference Guide A-27

Appendix A: Internationalization
Programming Example
wcscat(searchBuf, searchStr);
wcscat(patternBuf, patternStr);
if (chTextInfo.wholeWords)
{

wcscat(searchBuf, space);
wcscat(patternBuf, space);

}
/*---+
 Prepare for case insensitive search if necessary
+--*/

if (!chTextInfo.matchCase)
{

wcsupr(searchBuf);
wcsupr(patternBuf);

}
/*---+
 Attempt to match substrings
+--*/

if ((*start=wcsstr(searchBuf, patternBuf)) == NULL)
return ERROR;

*start=searchStr + (*start-searchBuf);
*end=*start + wcslen(patternStr);
return SUCCESS;

}

The wide character version works with Asian text, but is not efficient. This example
exposes the limitations of internationalization support by MicroStation very well.

Firstly, the chTextInfo variable, published by mdlDialog_publishComplexVariable in
main cannot accept wide character strings because the dialog box manager currently
does not support wide character format. Therefore, chTextInfo.oldString and
chTextInfo.newString need to be represented by multi-byte format and converted to
wide character format by mbstowcs before processing.

The second problem is the wcsupr function. Most of char variables were replaced by
MSWideChar variables. The conventional string functions, strcpy, strlen, strcat and
strstr were replaced by wide character functions, wcscpy, wcslen, wcscat and
wcsstr. However, wcsupr had to be created using towupper because the wide
character version of strupr is not defined in WPI.

The third problem is the mdlDialog_openAlert function in changeTextElementW. Most
MDL functions do not accept wide character strings. Therefore, any wide character
strings need to be converted to multi-byte format by wcstombs before calling the MDL
functions.

The only exceptions are the mdlText_xxxWide functions. For instance,
mdlText_extractWide and mdlText_createWide are used in changeTextElementW.
A-28 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Display and Output
✍ The arguments are not exactly the same between mdlText_create and
mdlText_createWide. For details, refer to the “MicroStation MDL Function
Reference Manual.”

✍ The assignment of character constants in changeTextElementW does not
use the L prefix as explained in Limitations.

Display and Output
Applications can display messages and prompts in dialog boxes employing the same
MDL functions used for English applications. Text elements can also be created in
design files using the same MDL functions, although Version 5 has some new functions
and parameters useful for foreign languages. Generally, major modifications are
unnecessary to existing program code. Applications should not hard code font name
and number as they vary from language to language.

To display translated text, correct fonts need to be installed and selected. Font libraries
for foreign languages are usually included in localized versions of MicroStation. If there
is no localized version of MicroStation, it may be necessary to create a new font for
your applications.

Output devices like plotters usually recognize text elements as lines and shapes when
a design file is output. Therefore, no special precaution is required to output text in
foreign languages.

Fonts
MicroStation uses two different types of font libraries: raster font and vector font
libraries. The term Font libraries generally refers to the latter, as users cannot change
the raster font. In Version 5, the vector font libraries are called font symbology resource
files since they are saved in resource file format.

The raster font library contains bit-map images of characters used for displaying text in
dialog boxes. The vector font library contains line strokes of the same character sets for
displaying and plotting text elements in a design. The two libraries are created in
different ways, and often have slightly different character sets. Since they have
completely different forms, they cannot be translated or exchanged. For example, the
Font Installer does not let you install a TrueType font or a PostScript font as a dialog
box font.

Raster Font (X-Window BDF Font)

MicroStation uses a raster font for displaying window titles and dialog items. The DOS
and EnvironV versions of MicroStation have their own raster font library rastfont.lib.
MicroStation MDL Programmer’s Reference Guide A-29

Appendix A: Internationalization
Raster Font (X-Window BDF Font)
rastfont.lib was generated from public domain fonts from the X Window system. On
other platforms, MicroStation directly uses the raster font available on the operating
systems. For instance, the Macintosh version uses fonts defined in the System File and
the X Windows version uses fonts defined in the X Windows Window Manager. In
general, users are unable to change raster font names although font sizes can be
selected from the User Preference dialog box.

Creating a New Raster Font
If a raster font for a particular language is unavailable, it may be necessary to create a
new one. To do so, you need to obtain or create the desired fonts in X Windows BDF
(Basic Distribution Format) and then convert them to SNF (Server Natural Format)
binary format. The SNF conversion is carried out using a program called bdf2snf which
Bentley can provide. The SNF files are then put into rastfont.lib using the MicroStation
MDL librarian.

Creating a BDF file
The BDF format is an ASCII text format which defines font characteristics and character
definitions as specified by the MIT X Consortium and Adobe Systems, Inc. The
documentation “Bitmap Distribution Format 2.1” provides the necessary information
describing the format of the BDF files. It is recommended that unless you are familiar
with the BDF file format, that you modify an existing font definition.

STARTFONT 2.1
FONT -Misc-Fixed-Medium-R-Normal--14-130-75-75-C-140-JISX0208.1983-0
SIZE 14 75 75
FONTBOUNDINGBOX 14 14 0 -2
STARTPROPERTIES 19
FONTNAME_REGISTRY ""
FOUNDRY "Misc"
FAMILY_NAME "Fixed"
WEIGHT_NAME "Medium"
SLANT "R"
SETWIDTH_NAME "Normal"
ADD_STYLE_NAME ""
PIXEL_SIZE 14
POINT_SIZE 130
RESOLUTION_X 75
RESOLUTION_Y 75
SPACING "C"
AVERAGE_WIDTH 140
CHARSET_REGISTRY "JISX0208.1983"
CHARSET_ENCODING "0"
DEFAULT_CHAR 165
FONT_DESCENT 2
A-30 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Raster Font (X-Window BDF Font)
FONT_ASCENT 12
COPYRIGHT "Public domain font. Share and enjoy."
ENDPROPERTIES
CHARS 7052
STARTCHAR 0001
ENCODING 1
SWIDTH 42 0
DWIDTH 7 0
BBX 7 14 0 -2
BITMAP
00
00
18
18
3C
3C
7E
7E
3C
3C
18
18
00
00
ENDCHAR
STARTCHAR 0002
...........

Compiling a BDF file into a SNF file
A BDF font definition font can be compiled into the SNF format by:

bdftosnf <bdf_file_name> -o <snf_file_name>

The output font file names have to be of the format xxxxxxNN.snf (x's represent some
contraction of the font series name and NN represents the point size of the font). For
example, to compile helvr14.bdf, execute the following command:

bdftosnf helvr14.bdf -o helvr14.snf

Adding the SNF file to the font library
To add the SNF font to the library, execute the mlib command as shown below:

mlib -a rastfont.lib <snf_file_name>
MicroStation MDL Programmer’s Reference Guide A-31

Appendix A: Internationalization
Common Problems
If the user wants to retain the ability to select point sizes, he will have to put the whole
series of font sizes into rastfont.lib.

Changing Default Font Series and Sizes
To make MicroStation use the new font series, certain fields in the user preference
structure have to be changed with a simple MDL program or the CHNGFONT application
available from Bentley Systems, Incorporated. In the example below, username.upf is
the name of a user preference file. In Version 5 the user preference files have the file
extension .upf and are usually found in CONFIG/USER. The font series name and font
sizes also need to be changed to fit your situation. In this example, newfont14.snf is
the name of a SNF file.

To change the default font definition for MicroStation:

#include <basedefs.h>
#include <rscdefs.h>
#include <userpref.h>
RscFileHandle userPrefsH;
UserPrefs *userRscP=NULL;
int status;
mdlResource_openFile(&userPrefsH, "username.upf", RSC_READWRITE);
/* read MicroStation's current font specification */
userRscP=(UserPrefs *)mdlResource_load(userPrefsH,RTYPE_USERPREFS,-1);
strcpy(userRscP->systemRoot,"newfont"); /* system font */
strcpy(userRscP->titleRoot,"newfont"); /* title font */
strcpy(userRscP->dlogNormRoot,"newfont"); /* dialog normal font */
strcpy(userRscP->dlogBoldRoot,"newfont"); /* dialog bold font */
strcpy(userRscP->dlogFixRoot,"newfont"); /* fixed-width font */
strcpy(userRscP->dlogFixBoldRoot,"newfont"); /* fixed bold font */
strcpy(userRscP->buttonFont,"newfont"); /* dialog button font */
userRscP->systemPointSize[0] = userRscP->systemPointSize[1] = 14;
userRscP->titlePointSize[0] = userRscP->titlePointSize[1] = 14;
userRscP->dialogPointSize[0] = userRscP->dialogPointSize[1] = 14;
userRscP->buttonPointSize[0] = userRscP->buttonPointSize[1] = 14;
/* Write the updated resource */
mdlResource_write(userRscP);
if (userRscP)

mdlResource_free(userRscP);
if (userPrefsH)

mdlResource_closeFile(userPrefsH);

Common Problems

When dealing with foreign language fonts, you may see one of the following problems
related to the raster font library.
A-32 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Common Problems
• MicroStation fails to start and displays an error message, “Unable to
locate font in raster font library”.
This error message indicates that MicroStation could not load the font
specified in the user preference setting.
For DOS and EnvironV versions, the location and contents of
rastfont.lib need to be checked. The location of rastfont.lib is specified
by the MS environment variable MS_RFONT. Check if rastfont.lib exists
at the location to which MS_RFONT points. In Version 5 the default
location is the root directory of MicroStation on Version 5.

The contents of rastfont.lib can be viewed by the following command:

mlib -t rastfont.lib

On platforms other than DOS and EnvironV, check system settings.
For example, the xlsfonts command can be used on the X Window
System. On Windows NT, check the Control Panel's font setting. On
the Macintosh, check the System Folder.
If the raster font library is switched from one to another, deleting old
*.upf files in /CONFIG/USER often resolves the problem. If deleting
the old *.upf files does not resolve the problem, view the contents of
the *.upf files by the resource dump utility. To do so, type:

rdump -t'Uprf' -v username.upf

• Rainbow color noise is displayed when typing European accented or
Asian characters and MicroStation hangs. This error occurs because
the character you typed is missing in the font library. On DOS and
EnvironV, the showsnf utility can be used to dump the contents of a
SNF file. On other platforms, different tools are available for dumping
the contents of system fonts.

• Wrong characters are displayed. This error happens when an incorrect
character translation table is applied or glyphs in the font are
incorrectly mapped. If the language in use is a European language
and its internal encoding method is based on DEC Multinational
ASCII, the raster font needs to be encoded in DEC Multinational ASCII.
In the case of Asian language text, the codeset handler may be
disabled (see the section titled, Codeset Handler). If this is the case, an
Asian double-byte character is displayed as two single byte characters.
A localized version of ustation.rsc needs to be installed to fix the
problem.

• Symbols are not correctly displayed. Character values for some symbol
characters are defined in the User Preference resource file. The values
may not match the values in the font library, (see userpref.h).

editorEOLChar /* end of line in text editor */
degreeCharDialog /* degree symbol used in dialog box */
degreeCharDesign /* degree symbol used in design text */
plusMinusChar /* +/- symbol for dimension */
MicroStation MDL Programmer’s Reference Guide A-33

Appendix A: Internationalization
Vector Font (Font Symbology Resource)
These characters cannot be edited from the User Preference dialog
box. If necessary, their values need to be evaluated or changed using
the method explained in Creating a New Raster Font.

• DOS Window does not display correct characters. The DOS Window
(DOS version only) uses raster font available in system ROM instead
of rastfont.lib. Bitmap images of characters are usually stored in code-
page information files, also called font files and have a .cpi extension.
In order to display foreign characters (non-Asian languages), the
correct code page needs to be selected. For Asian double-characters
(Chinese, Korean and Japanese), the DOS Window uses the
rastfont.lib for display.

Vector Font (Font Symbology Resource)

MicroStation’s vector font library contains stroke elements to represent text in design
files. In Version 5, font libraries are resource files, and typically have the extension .rsc.
The old and new font files are not interchangeable.

Character Mapping of Vector Fonts
Vector fonts do not necessarily have the same character mapping as raster fonts. Almost
all vector fonts have the same characters in the lower half of ASCII, range (0x20 -
0x79). Many fonts have undefined characters in the upper half of ASCII, (0x80 - 0xff).
In the standard font symbology resource file, font.rsc, only Font #32, 90, 91 and 92
have accented European characters.

Several fonts have fraction symbols in the range, (0x81 - 0xbf). Fractions are used in
the United States but not in most foreign countries where metric measurement is
utilized. Therefore, this area may be used for foreign characters.

Some common symbols in the standard fonts are mapped to different code values from
the ones in the raster font libraries because of the existence of fraction symbols. For
instance, the degree symbol is mapped to 0x5e which is a caret in the raster font. But
in foreign fonts, which have no fraction symbols, the degree symbol is mapped to
0xb0, the same value as in the raster font. Similarly, the +/- symbol is mapped to 0xc0
A-34 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Common Problems
in English fonts with fractions, and 0xb1 in foreign fonts. Character mapping of vector
fonts can be viewed with the FONTEDIT application.

Creating Vector Font Libraries for Foreign Languages
In Version 5, industry-standard fonts such as PostScript Type1, TrueType fonts and
AutoCAD shape files can be imported into MicroStation. These fonts often have
different character mappings. Therefore, character positions may need adjustment
using the FONTEDIT utility after fonts are imported.

A vector font can also be created from a font cell library. When creating a foreign font,
it is necessary to define /international and /nofractions switches in $FONT$ cell.

Common Problems

When dealing with foreign language version of vector fonts, you may see one of the
following problems related to the vector font library.

Figure 2.5. Viewing character mapping with FONTEDIT.
MicroStation MDL Programmer’s Reference Guide A-35

Appendix A: Internationalization
Text Placement in Design Files
• Wrong characters are displayed or no character is displayed.
In Version 4, if a text string contained a character not available in the
font, MicroStation displayed an asterisk ‘*’. If the font did not contain
an asterisk, (oct052/dec42), MicroStation would not display a
character. Version 5 displays a question mark in a diamond if a
character is unavailable. This problem can be corrected by installing
or selecting the correct font.

• Characters are overlapped when text is drawn in the vertical direction.
To display text vertically, a font needs to be designed so each
character fits inside the character tile box. Often, glyphs for 'j', 'g', 'p'
and 'y' are drawn below the baseline of the tile box. Because
MicroStation aligns each character based on tile box height, some
characters may overlap with the next character unless inter-character
spacing is defined. It is also recommended that each glyph be
centered inside the character tile box. Otherwise, each character will
not align in the vertical direction.

Text Placement in Design Files
The existing MDL functions can be used to place and manipulate text in any foreign
language if the correct font number is selected. Applications should never hard-code
font names or font numbers when creating text elements.

In addition, Version 5 offers new text functions for MDL applications. The new
functions are extended versions of existing text functions. The new functions accept
strings in wide-character format and also support new text attributes such as slant,
inter-character spacing, underline and vertical direction. Vertical text is useful in Asian
user data. Inter-character spacing is also used for drawing Asian text because there is
no word spacing in Asian text writing. To align text, an equal amount of text is inserted
between characters.

There are ten new MDL functions for manipulating text elements:

mdlText_createWide

mdlText_extractWide

mdlText_extractStringWide

mdlTextNode_createWide

mdlTextNode_createWithStringsWide

mdlTextNode_extractWide

mdlText_extractStringsFromDscrWide

mdlText_addStringsToNodeDscrWide
A-36 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Plotting and Printing
mdlText_expandStringWide

mdlText_compressStringWide

In these functions, the string format has been changed from char to MSWideChar. The
TextParam structure was replaced by the TextParamWide structure defined in mdl.h. It
defines the text element's inter-character spacing direction (horizontal or vertical), slant
and underline.

✍ The order of function arguments has been rearranged in some of these
functions.

typedef struct textParamWide
{

int font;
int just;
int style;
int viewIndependent;
int nodeNumber; /* for textnode only */
double slant; /* valid if flags.slant = 1 */
double lineSpacing; /* for textnode only */
double characterSpacing; /* if fixedWidth/interCharSpacing */
double underlineSpacing; /* valid if flags.underline */
TextDrawFlags flags;

} TextParamWide;

The values for inter-character spacing, slant and underline spacing are valid only if
corresponding flags are set in flags. Vertical direction is also set by flags. For details,
see the MDL Function Reference Manual and also the create.mc example in the /MDL/
EXAMPLES/DOC directory.

Plotting and Printing
When design files are sent to output devices such as plotters and printers, text
elements are usually translated into stroked elements. Therefore, applications have
nothing to worry about.

The Comment line in the Plotting Option does not work with most foreign languages
unless the plotting device supports foreign text output.

Messages and Resource Files
The proper treatment of message strings and dialog items is an essential part of
localization. All user visible embedded text in an application must be externalized.
MicroStation MDL Programmer’s Reference Guide A-37

Appendix A: Internationalization
Untranslatable Strings
Your application and makefile must be set up properly so that it can be translated in a
timely and convenient manner. Development of applications and translation of
message strings often take place at different locations. Therefore, it is important to
separate all text strings in .mc and dialog box resources into message resource files so
they can be recompiled by the translators.

Untranslatable Strings
In principle, every text string to which users are exposed, needs to be translated and
therefore should be externalized from program code. For example, error messages,
prompts, yes/no responses and all labels in dialog boxes (including window titles)
should be placed in resource files. Many users prefer to create filenames in their native
languages for design files, cell libraries and reference files. This is also true for level
names and database table names. There are some cases where strings should not be
translated.

Cell names

While a cell library file name can be in a foreign language, names of each cell are
restricted to Radix-50 for historical reasons. Radix-50 is a subset of ASCII which
includes only upper case letters, (A-Z, 0-9) and just three special characters (space, '$’
and '.'). This is probably the most disliked feature of MicroStation by users in foreign
countries.

Database column names (dBASE only)

Currently, database column names cannot be displayed in foreign languages. However,
column values can be entered and displayed in foreign languages.

MDL Command Names

Command names are usually not translated, although a translated word can be typed
as an argument after a command name.

Dialog Box Design
When a string is translated into another language, its length can sometimes shrink, but
normally it expands. The extent of expansion depends on the language and the length
A-38 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Leaving Extra Space for String Expansion
of the original text. When there is not enough space, translators are forced to
abbreviate the string. This is often confusing to users.

Leaving Extra Space for String Expansion

The best solution is to leave enough white space when a dialog box is created. Usually
it is adequate if 30 - 50% of extra space is designated for expansion. Developers tend to
make push buttons too narrow. There is often not enough space to the left of text field
labels. In this case, translated strings may need abbreviation. To avoid this, text items
and slider items can be shifted to the right, and the push buttons can be made wider.

Figure 2.6. Translated text becomes longer than original English text.

Figure 2.7. Not enough
space on the left of the two
text fields and the buttons
are too narrow.

Figure 2.8. Better design of
the same dialog box.
MicroStation MDL Programmer’s Reference Guide A-39

Appendix A: Internationalization
Dialog Box Aspect Ratio
Dialog Box Aspect Ratio

Although it is desirable to leave extra space in dialog boxes, this method does not
always work. It is difficult to leave white space for a large dialog box with many dialog
items.

The only perfect way to fit all translated strings without the dialog box editor is to edit
the .r resource files and change the position and size of individual dialog items. This is
difficult and time consuming, because translators are usually not familiar with MDL and
resource file format.

An easier (although more approximate) method is to change the aspect ratio for each
dialog box individually. The aspect ratio for each dialog box is defined at the top of a
dialog resource as:

/* myappdlg.r: */
#undef XC
#define XC (DCOORD_RESOLUTION/2)*ASPECT_MYDIALOGBOX
#define DBOX_WIDTH57*XC
#define DBOX_HEIGHT14*YC
#define XW 17*XC
#define BW 12*XC
DialogBoxRsc DIALOGBOXID_MyDialog=
{

DIALOGATTR_DEFAULT, DBOX_WIDTH, DBOX_HEIGHT, NOHELP, MHELP,
NOHOOK, NOPARENTID, TXT_DialogBoxTitle,

{
{{4*XC, 9*YC, TW, 1*YC}, Text, TEXTID_MyText, ON, 0x1, "", ""},
{{3*XC, 11*YC, BW, 0}, PushButton, PUSHBUTTONID_, ON, 0, "", ""},
...

The aspect ratio value (ASPECT_MYDIALOGBOX) is defined in a dialog box text include
file under the /ENGLISH sub-directory file (myapptxt.h in Figure 2.13). The default
value of the aspect ratio is 1.0.

/* myapptxt.h: */

#define ASPECT_MYDIALOGBOX 1.0
#define TXT_DialogBoxTitle "My Dialog Box"
#define TXT_TextFieldLabel "My Text Field"
#define TXT_PushButtonLabel "My Push Button"
...

The value is adjusted by translators, usually to 1.2 - 1.5. Because size and position of
each dialog box defined is based on XC, the entire dialog box expands, leaving more
space for translation.
A-40 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Dialog Box Aspect Ratio
Whenever you create a new dialog box, always add an aspect ratio. In order for the
aspect ratio to work, the size and width of all dialog boxes and dialog items need to be
defined using the XC macro. Do not use absolute values.

If your program dynamically adjusts the size of a dialog box or dialog items, do not use
fixed sizes. It is necessary to measure the actual size of dialog items with
mdlDialog_stringWidth in the hook function.

If there is more than one dialog box in a resource file, definitions of dialog items
should be defined immediately after the dialog box definition to which they belong
(Figure 2.12). It is bad practice to define all dialog items at the end (Figure 2.11)
because different aspect ratio values might be defined. This results in some dialog
items being scaled incorrectly. If two or more dialog boxes have to share the same
dialog items, the aspect ratio needs to be shared by the dialog boxes.

The aspect ratio sometimes does not work for a dialog box which has a generic item.
This is because the hook function of the generic item often assumes the size of the
dialog box does not expand. The size of the generic item should be measured inside its
hook function. If a generic item should not expand horizontally, the YC macro needs to
be used to define the width of the generic item.

Figure 2.9. Aspect Ratio = 1.0. Figure 2.10. Aspect Ratio = 1.5.
MicroStation MDL Programmer’s Reference Guide A-41

Appendix A: Internationalization
Source File Organization
Source File Organization
Only files with translatable strings and dialog box resource files should be given to
translators. The set of such files is called a translation kit. The files should be organized
so translators can recompile them without source, .mc, files. If source files are not
properly organized errors often occur when files are extracted from the development
source tree to create a translation kit.

Many developers are aware that hard-coding strings in source code is bad practice for
translation. However, many do not know that larger numbers of untranslatable strings
are caused by makefile errors or improper file organization. For instance, one message
resource file located in a wrong make file can result in 50 untranslatable strings. The
damage is far larger than a couple of hard-coded strings.

A makefile is typically divided into two parts. One part that makes the string-free
portions of the application .mke, and the other .mki file that makes the language
dependent parts. The .mki file is included from the .mke file. The .mki file makes the
final application .ma file. All the include files, string list resource files and the makefile
(.mki only) are given to translators. After translation, translators execute the .mki
makefile.

A typical source file structure is shown below:

Dialog Box #1

Dialog Box #2

Dialog Box #3

All Dialog Items

Aspect Ratio #1

Aspect Ratio #2

Aspect Ratio #3

Dialog Box #1

Dialog Box #2

Aspect Ratio #3

Dialog Box #3

Aspect Ratio #1

Aspect Ratio #2

Dialog Items #2

Dialog Items #1

Dialog Items #3Figure 2.11. All dialog items
defined at the end.

Figure 2.12. Dialog items
defined separately.
A-42 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Source File Organization
/mdlapps/myapp/ - (non-language dependent source files)
 myapp.mke - make file for language independent files
 myapprsc.mki - make file for language dependent files
 myapp1.mc - program file #1
 myapp2.mc - program file #2
 myapp.h - program header for.mc files
 myappdlg.h - dialog IDs for myappdlg.r
 myappdlg.r - dialog box definition
 myappcmd.r - command resource
 mynotran.r - other non-translatable resource
 mytypdef.mt - type definition file

/mdlapps/myapp/english/ - (directory for language dependent files)
 myappmsg.r - message list used by myapp1.mc and myapp2.mc
 myapptxt.h - label strings for myappdlg.r

Program objects and non-language dependent resource objects are merged into a .mi
file and given to the translators. A translation kit includes the following files:

myapprsc.mki
myapp.mi- string-free object
myappdlg.h
myappdlg.r
myappcmd.h
myappmsg.r
myapptxt.h

The relationship of source files and object files is shown in Figure 2.13.

Dialog box resource files (myappdlg.r in this example) and message resource files
(myappmsg.r) should always be built by a .mki file. A typical error developers make is
to include these resource files in the .mke file.

Another common error is that the text header file (myapptxt.h) is directly included in
MDL source files, .mc. In this case, English strings are built into the .mi file even if the

Figure 2.13. Build process of MDL source files.
MicroStation MDL Programmer’s Reference Guide A-43

Appendix A: Internationalization
Strings in Program Source (.mc) Files
strings are not hard-coded. Because translators are not able to rebuild .mi files, it is
impossible to translate the strings. Never include a string header file into program
source files.

When a new MDL program is written, it is good to start with one of the makefiles for
one of the MicroStation MDL samples.

Strings in Program Source (.mc) Files
All strings in .mc source files should be stored in separate message resource files, .r.
Some people use an ASCII text file or a binary file to store strings. But it is not
recommended because it might provide difficulties for automatic translation tools.

Program data and other strings which should not be translated must be placed in a
separate resource file so they are not translated by mistake. A program often fails
because such strings are translated. If you have to add such a string in a message
resource file, add a comment “/* DO NOT TRANSLATE */”. In the example below, a
graphic driver failed after /color was translated because the string was used as a
switch for the configuration program.

ConfMenu CM_BIOS_MODE=
{
 {0,
 "Color",
 "Text mode emulates IBM Color Graphics Adapter (CGA)",
 "/color" /* DO NOT TRANSLATE */

},

A common mistake of inexperienced developers is to define macros for strings in
include files for inclusion in source files. Even if the strings are not hard-coded, they
are not translatable because translators are not given the source files. No header files
(.h) which contain translatable strings should be included by source files. All message
strings need to be loaded at run-time by functions like
mdlResource_loadFromStringList. When loading message strings, take into account
expansion of translated strings and allocate a large enough string buffer.

Common errors are shown below:

/* Bad example #1 */
/* myapp.mc: */

mdlDialog_openAlert(“Are you sure?”);
mdlOutput_error(“This is an error!);

/* Bad example #2 */
/* myapp.h: */

#define ALERT_STRING “Are you sure?”
#define ERROR_STRING “This is an error!”
A-44 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Strings in Dialog Box Resource (.r) Files
/* myapp.mc: */

#include <myapp.h>
mdlDialog_openAlert(ALERT_STRING);
mdlOutput_error(ERROR_STRING);

/* Good example */
/* myapp.mc: */

char alertString[512];/* allocate enough size for expansion */
mdlResource_loadFromStringList(alertString, 0, MESSAGELISTID_Errors,

ERRORID_Alert);
mdlDialog_openAlert(alertString);
mdlOutput_rscPrintf(MSG_ERROR, NULL, MESSAGELISTID_Errors,
ERRORID_Error);

/* myappmsg.r: */

MessageList MESSAGELISTID_Errors=
{

{
{ERRORID_Error, “This is an error!”},
{ERRORID_Alert, “Are you sure?”},
...
}

}

Strings in Dialog Box Resource (.r) Files
Dialog box resources should not have labels and other text strings hard-coded. Instead
they should have text strings defined in an include file .h in the language dependent
sub-directory (/english) of the application. Then translators can work only on the
include file and not be concerned with the complicated syntax of dialog box
definitions and other resources. Definition for data structure and dialog ids should be
defined in a separate include file and should not be mixed with text strings.

An exception is an icon resource. Icon names are usually not visible to users unless
they try to edit icons with the icon editor. If an icon name is translated and becomes
longer than 14 characters, the resource compiler cannot compile the icon resource file.
Translators often do not know how to fix the compiler error. Therefore, it is
recommended to leave icon names in English. In the example below, “Place Line”
should not be pulled out to an include file under the /ENGLISH directory.

IconCmdSmallRsc ICONCMDID_PlaceLine =
{

23, 23, FORMAT_MONOBITMAP, BLACK_INDEX,
"Place Line",/* DO NOT TRANSLATE */
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
MicroStation MDL Programmer’s Reference Guide A-45

Appendix A: Internationalization
Strings in Dialog Box Resource (.r) Files
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
...
}

};

Some common errors are shown below:

/* Bad example */
/* dialog.r: */

DialogBoxRsc DIALOGID_Basic=
{

DIALOGATTR_DEFAULT, 25*XC, 7*YC,
NOHELP, MHELP, HOOKDIALOGID_Basic, NOPARENTID,
“Basic Dialog Box”, /* Hard-coded dialog box title */
{

{{X1,GENY(1),XW,0}, Text, TEXTID_Basic, ON, 0, “”, “”},
}

};
DItem_TextRsc TEXTID_Basic=
{

NOCMD, LCMD, SYNONYMID_Basic, NOHELP, MHELP,HOOKITEMID_Dummy,
NOARG, 4, “%ld”, “%ld”, “1”, “3”, NOMASK, NOCONCAT,
“Parameter 1:”, /* Hard-coded dialog item label */ “”

};

/* Good example */
/* myapptxt.h - translators will work only on this file */

#define TXT_DIALOGTITLE “Basic Dialog Box”
#define TXT_DLOGITEMLABEL “Parameter 1:”

myappdlg.r - never edited by translators

#include <myapptxt.h>
DialogBoxRsc DIALOGID_Basic=
{

DIALOGATTR_DEFAULT, 25*XC, 7*YC, NOHELP, MHELP,HOOKDIALOGID_Basic,
NOPARENTID, TXT_DIALOGTITLE, /* replaced with macro */
{

{{X1,GENY(1),XW,0}, Text, TEXTID_Basic, ON, 0, “”, “”},
}

};
DItem_TextRsc TEXTID_Basic=
{

NOCMD, LCMD, SYNONYMID_Basic, NOHELP, MHELP, HOOKITEMID_Dummy, NOARG,
4, “%ld”, “%ld”, “1”, “3”, NOMASK, NOCONCAT,
TXT_DLOGITEMLABEL, /* replaced with macro */ “”

};
A-46 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Compiling Translated Resource Files
Compiling Translated Resource Files
Compiling “.r” Files with Character Translation Tables

Character translation can be applied to text strings in MDL resource files by inserting
the pragma directive shown below.

#pragma translate "chartran.rsc"

This tells the resource and MDL compiler to get the character translation resource from
the resource file chartran.rsc and apply it to all quoted strings.

Character translation tables for some European languages are found in MicroStation’s
CHARTRAN directory.

cnfr863.rsc - code page 863 (Canadian-French)
engl437.rsc - code page 437 (United States)
mult850.rsc - code page 850 (Multilingual - Latin I)
nord865.rsc - code page 865 (Nordic)
port860.rsc - code page 860 (Portuguese)

Before compiling, ensure that the MS environment variable is set to indicate the base
directory (without a trailing "/", for example, "MS=/ustation"). The MDL compilers
search the $(MS)/chartran directory for the table. If the table is located elsewhere, the
directory for translation resource can be specified by the -t flag. For example:

rcomp -t $(MS)/chartran message.r

✍ This #pragma is only necessary if the files have been edited on the PC or
Macintosh. If you edit the files on UNIX workstations, do not include this
line. This translation method currently does not apply to Asian languages
(Chinese, Korean and Japanese).

Compiling Translated Resource Files for Asian Text

When compiling resource files with Asian double-byte text strings, a special precaution
is necessary. The MDL resource compiler uses code range information stored in a
localized version of the MicroStation resource file ustation.rsc. The file ustation.rsc
contains a run-time configuration for the code set handler. The codeset handler is
integrated inside ustation.rsc and decides which sequence of two bytes is an Asian
double-byte character or two ASCII characters.

To do so, the MS environment variable should point to the directory where a localized
version of ustation.rsc is located, typically MicroStation’s root directory. When the
resource compiler finds ustation.rsc, it displays the message:

“Multi-byte character processing enabled”
MicroStation MDL Programmer’s Reference Guide A-47

Appendix A: Internationalization
Numbered Argument Lists
If this message is not displayed, the environment variable is not correctly set, or the
English version of ustation.rsc is being used. As a result, some double-byte characters
may be converted to the wrong characters.

Numbered Argument Lists
The ordering of words in a message string may vary in some languages. The standard
argument list imposes a fixed ordering on substitutions in the output string.

mdlResource_loadFromStringList(formatString,0,MESSAGELISTID,MSGID_OWNER
);
mdlOutput_vprintf(MSG_MESSAGE,formatString,objectString,subjectString);
MessageList MESSAGELISTID_MESSAGES=
{

{
 ...

{MSGID_OWNER, "%s owned by %s"}

If translation requires reordering of output values, the % character is replaced by
%digit$, where digit is a decimal value giving the position of the required argument in
the argument list. For example:

MessageList MESSAGELISTID_MESSAGES=
{

{
...
{MSGID_OWNER, "%2$s owns %1$s"}

Similarly,

{23, "month: %d, date: %d, year: %d"}

can be rearranged to:

{23, "date: %2$d, month: %1$d, year: %3$d"}

This method can be used with mdlOutput_printf, mdlOutput_vprintf, printf,
sprintf, vsprintf, vprintf, fprintf and vfprintf.
A-48 MicroStation MDL Programmer’s Reference Guide

Appendix A: Internationalization
Hardware
Tools for Development and Testing
Software development for foreign language applications generally can be done using
the same tools used for the English version. Translation of resource files and testing
may require special hardware or localized versions of the operating system.

Hardware
Some foreign languages may require a special keyboard for typing foreign characters
which do not exist on a standard 100-key keyboard.

Asian versions of MicroStation often require additional memory due to large font
libraries. The size of both raster font and vector font libraries usually exceeds 1 Mb. A
symbology resource file converted from TrueType or PostScript fonts can occupy
several megabytes of disk space. Running MicroStation with insufficient memory may
be slow due to disk swapping.

The Japanese version of MicroStation runs on the NEC-9800 series computer as well as
on Japanese IBM compatibles. The NEC-9800 computer is a proprietary system
marketed only in Japan and the architecture is not compatible with IBM PCs. It is
recommended to test on the NEC computer if you are writing external programs.

Software
Depending on the target language, a localized version of the operating system may be
required. You may also need a localized version of MicroStation. For example, a correct
version of the character translation table and ustation.rsc may be required. If your
application communicates with external applications; database applications such as
Oracle and dBASE, localized versions of such software may be necessary.

Recommended Reading
There are several books on internationalization.

1. “Internationalization Made Easy” by The Open Software Foundation,
1990

2. “The Programmer's Supplement for Release 5” of the O'Reilly
Definitive guides to the X Window System” by David Flanagan,
O'Reilly & Associates, Inc., 1991

3. “Unicode Standard - Worldwide character Encoding” by the Unicode
Consortium, Addison-Wesley Publishing Company, Inc., 1991 (Vol. 1),
1992 (Vol. 2)
MicroStation MDL Programmer’s Reference Guide A-49

Appendix A: Internationalization
Recommended Reading
4. “Guide to Macintosh Software Localization” Addison-Wesley
publishing Company, 1992, by Apple Computer, Inc.

5. Internationalisation Guide, X/Open Company, Ltd. 1992

6. Understanding Japanese Information Processing, by Ken Lunde,
O'Reilly & Associates, Inc., 1993

7. Software Internationalization and Localization: an Introduction, by
Emmanuel Uren, Robert Howard, and Tiziana Perinotti, Van Nostrand
Reinhold

8. Programming Language C: Multibyte Support Extensions, ISO/IEC
9899:1990 Amendment 1:1993

9. Developing International Software for Windows 95 and Windows NT,
by Nadine Kano, Microsoft Press, 1995

10. Global Software, by Dave Taylor, Springer-Verlag, 1992

11. Solaris International Developer’s Guide, by Bill Tuthill, Prentice Hall,
1993
A-50 MicroStation MDL Programmer’s Reference Guide

Appendix B: Settings Manager
Reading and writing settings manager files is quite straightforward using the structures
and constants defined in settings.h. Settings manager files are resource files, so they
can be manipulated with the mdlResource_* MDL functions. These files have a .stg
extension by convention.

Creating Settings Manager Files
To create a new settings manager file and open it for writing, the following code
fragment may be used:

#include <msrsrc.fdf>

int status;
RscFileHandle rFileH;
status = mdlResource_createFile("mysets.stg", "Settings Data", 0);
if (status == SUCCESS)

status = mdlResource_openFile(&rFileH, "mysets.stg",
RSC_READWRITE);

"Settings Data" is the resource identifier string used by the settings manager
application. This string SHOULD NOT be translated and is used here for consistency.

The resource types (RTYPE_*) of the settings manager resources are also included in
settings.h. They are:

Resource Type Description

RTYPE_Base Base Units (SI, English)

RTYPE_Unit Units (ft, in, m, cm, mm)

RTYPE_DwgScale Drawing Scale

RTYPE_WorkUnits Working Units

RTYPE_Linear Linear Settings

RTYPE_Mline Multi-line Settings

RTYPE_Dim Dimension Settings

RTYPE_Cell Cell Settings

RTYPE_Apat Area patterning Settings
MicroStation MDL Programmer’s Reference Guide B-1

Appendix B: Settings Manager
Creating a Settings Group
The file settings.h in the mdl/include directory details the structure of resources found
in settings manager resource .stg files. These structures include:

typedef struct settingsGroup
{

char name[32];
long rscId[10];

} SettingsGroup;

The string, name, contains the name of the settings group. The array of longs, rscId,
contains a list of resource identifiers for each setting component. The component
resource Ids are organized within the array as follows:

The component resource Id is set to -1 if the group contains no components of the
type corresponding to the array index. If the settings group contains one or more
components corresponding to the array index, the resource Id of the first in the list of
those components is stored in the rscId array.

Creating a Settings Group
To create and initialize a settings group, the following code fragment may be used:

RTYPE_TextStg Text Settings

RTYPE_Point Active Point Settings

RTYPE_SettingsGroup Settings Group

STYLETYPE_Dimension Dimension style type

STYLETYPE_Multiline Multiline style type

Array
Element

Description

rscId[0] Linear component

rscId[1] Text component

rscId[2] Cell component

rscId[3] Point component

rscId[4] Area pattern component

rscId[5] Multiline component

rscId[6] Dimension component

rscId[7] reserved for future expansion

rscId[8] reserved for future expansion

rscId[9] reserved for future expansion

Resource Type Description
B-2 MicroStation MDL Programmer’s Reference Guide

Appendix B: Settings Manager
Writing a Settings Group
SettingsGroup myGroup;
int i;

/* give the settings group a name */
strcpy(myGroup.name, "My Settings");

/* initialize all the component ids to -1 */
for (i=0; i<10; i++)

myGroup.rscId[i] = -1L;

Writing a Settings Group
To write a settings group, the following code fragment may be used:

SettingsGroup myGroup;
long rscId;
RscFileHandle rFileH;

/* open the settings manager resource file */
if (SUCCESS==mdlResource_openFile(&rFileH,"myset.stg",RSC_READ_WRITE))
{

/* find next available settings group resource id in this file */
mdlResource_queryClass(&rscID, rFileH, RTYPE_SettingsGroup,

RSC_QRY_AVAIL_ID, NULL);

mdlResource_add(rFileH, RTYPE_SettingsGroup, rscId, &myGroup,
 sizeof(SettingsGroup), NULL);

mdlResource_closeFile(rFileH);
}

Settings components are stored as resources in the settings file. Each component
structure contains a common information structure called the “settings header.”

typedef struct /* Information common to every setting */
{

long nextComponentId; /* ID of next component */
int flag; /* override flags */
int level; /* level override */
int color; /* color override */
int weight; /* weight override */
char style[32]; /* line style override */
char name[32]; /* name/description */
char command[148]; /* keyin string */
double styleScale; /* line style scale */
char reserved[4];

} SettingsHeader;

Most members of this structure match the corresponding TCB or element structure
members, but two of the members need to be explained.
MicroStation MDL Programmer’s Reference Guide B-3

Appendix B: Settings Manager
Writing a Settings Group
The long, nextComponentId, is used to implement a list of components of a particular
type in a settings group. If the component is the end of the list, nextComponentId is set
to -1. If there are more components of its type in the settings group, nextComponentId
will contain the resource Id of the next component in the list.

Bits in the int, flag are set to indicate which of the settings in the component are
active. For example, if the component should set the active color when it is activated,
the value of the color must be placed in the int, color and the value COLOR_BIT
(specified as 0x2 in settings.h) should be OR’d into the int, flag. This mechanism
allows the component to specify ONLY the necessary active settings. In addition to the
settings contained in the settings header structure, flag is also used to indicate
overrides for some component-specific settings as documented in each component
structure.

The string, name, contains the name/description of the component.

The string, command, contains an optional command to be executed when the
component is activated.

For example, to add a linear settings component to an existing settings group structure
(refer to the LinearSettings structure in settings.h):

SettingsGroup *myGroupP;
LinearSettings myLinear;
RscFileHandle rFileH;

/* open the settings resource file */
if (SUCCESS!=mdlResource_openFile(&rFileH, "myset.stg", RSC_READWRITE))

return;

/* load settings group resource with id=1 */
/* Note: see the function ascGroup_findResourceByName() in ascgroup.mc

to load a settings group by name */

myGroupP = (SettingsGroup *)mdlResource_load(rFileH,
RTYPE_SettingsGroup, 1L);

if (myGroupP == NULL)
return;

/* set the active color to 3 */
myLinear.hdr.color = 3;
myLinear.hdr.flag |= COLOR_BIT
/* name the component "My Linear Setting" */
strcpy(myLinear.hdr.name, "My Linear Setting");

/* activate the place smartline command */
strcpy(myLinear.hdr.command, "place smartline");

/* place this linear component at the head of the list for this group */
myLinear.hdr.nextComponentId=myGroupP->rscId[COMPONENT_Linear];
B-4 MicroStation MDL Programmer’s Reference Guide

Appendix B: Settings Manager
Adding Functionality to ascgroup.ma
/* get the next available LinearSettings resource id */
mdlResource_queryClass(&myGroupP->rscId[COMPONENT_Linear],

rFileH,RTYPE_Linear, RSC_QRY_AVAIL_ID, NULL);

/* add the LinearSettings resource */
mdlResource_add(rFileH, RTYPE_Linear,myGroup->rscId[COMPONENT_Linear],

&myLinear,
sizeof(LinearSettings), NULL);

/* update the SettingsGroup resource */
mdlResource_write(myGroupP);
mdlResource_closeFile(rFileH);

An example MDL application called ascgroup has been provided to further illustrate
manipulation of settings manager files using mdlResource_ functions. This example
creates and edits settings groups as well as Linear, Cell and Text components based on
specifications the user provides in an ASCII file, and is available in the
mdl/examples/ascgroup directory.

Adding Functionality to ascgroup.ma

Adding Keywords to the Keyword Table
ascgroup stores the keywords it parses for in a string list that has three info fields. The
first info field (at offset 0) contains the keyword, level. Keyword levels defined so far
are primary (keyword operates at the settings group level), group (keyword operates
on a component contained in a group), or component (keyword operates on a
component).

The second info field is currently used only for component keywords, and indicates
the type of settings component to which the keyword applies. Some keywords
(SETTINGS_HDR) apply to all components.

The last info field identifies the action taken when that keyword is found.

✍ Since info field 0 is used, this string list cannot be used in a list box.

mdlStringList_search is used to search for the keyword in the list.
MicroStation MDL Programmer’s Reference Guide B-5

Appendix B: Settings Manager
Adding Keywords to the List
Adding Keywords to the List
1. Add the necessary defines to ascgroup.h. For example, if you are

implementing a new component, the component’s key value
(SETTINGS_LINEAR) as well as all the individual command values
(FILLCOLOR_SETTING) must be added.

2. Add the keyword members to the string list STRINGID_KeywordList in
ascgroup.r.

Coding the Functionality for new Keywords
ascgroup.mc will search the keyword list and return the string list index matching
your keyword, but you must add the code to process that keyword.

1. If you have added a new keyword level, a case must be added for the
new level in ascGroup_processKeywords.

2. If you have added a new primary keyword, a case must be added for
the new primary keyword in ascGroup_doPrimary.

3. If you have added a new group keyword, a case must be added for
the new group keyword in ascGroup_doGroup.

4. If you have added a new component keyword, a case must be added
for the new component keyword in the corresponding component’s
processing function (ascGroup_setLinearField).

5. If you have added processing for a component type that was not
previously supported, the functions: ascGroup_loadComponent,
ascGroup_newComponent, ascGroup_writeComponent and
ascGroup_getComponentHeader must be updated to support the new
component type. You must also add a case to ascGroup_doComponent
for the newly supported component type.

By convention, each supported component has a separate function to process its
keywords. The settings header also has a separate function for settings header
keywords.

Formatting the ASCII Input File
This section contains information on the rules which apply to the formatting of the
ASCII input file.

Rules/Format

1. Any text following a ‘#’ character is considered a comment.

2. Keywords are case sensitive.
B-6 MicroStation MDL Programmer’s Reference Guide

Appendix B: Settings Manager
Rules/Format
3. Each keyword must be placed with its value on a separate line (there
cannot be a line feed between the keyword and its value).

4. Maximum line length is 255.

5. Each “add” or “set” group or component keyword must have a
matching “end” keyword. Keywords in between the “add” and “end”
group or component keyword apply only to that group or component.

6. Key-in: MDL KEYIN ASGROUP ASCGROUP CONVERT <ascii
name> <settings file name>. If filenames are not supplied, the user
will choose them via the file open/create dialog boxes.

7. Supported keywords include those found in the following tables.

Values listed in quotations indicate that only the listed values apply. In
the input file, the quotations around the values should be omitted.

Keyword Value Description

setGroup group name Modify an existing settings group.

addGroup group name Add a new settings group.

endGroup none End specifications/modifications to the group
named by the last “setGroup” or “addGroup”
statement.

setLinear component name Modify an existing linear settings component.

addLinear component name Add a new linear settings component (must
be inside a “setGroup” or “addGroup” block).

endLinear none End specifications/modifications to the linear
settings component named in by the last
“setLinear” or “addLinear” statement.

setText component name Modify an existing text settings component.

addText component name Add a new text settings component (must be
inside a “setGroup” or “addGroup” block).

endText none End specifications/modifications to the text
settings component named by the last
“setText” or “addText” statement.

setCell component name Modify an existing cell settings component.

addCell component name Add a new cell setting component (must be
inside a “setGroup” or “addGroup” block).

endCell none End specifications/modifications to the cell
settings component named in the last
“setCell” or “addCell” statement.
MicroStation MDL Programmer’s Reference Guide B-7

Appendix B: Settings Manager
Generic Settings
Generic Settings

These apply to all components and must be contained within a “set<X>” or “add<X>”
component block.

Linear Settings

These apply only to linear settings components and must be contained within a
“setLinear” or “addLinear” component block.

Text Settings

These apply only to text settings components and must be contained within a
“setText” or “addText” component block.

Keyword Value Description

setLevel integer Sets active level for the component.

setColor integer Sets active color for the component.

setWeight integer Sets active weight for the component.

setStyle style name Sets the active line style for the component.

setName component name Changes the component's name/description.

setCommand key-in string Sets the active command for the component.

setStyleScale double Sets the active line style scale for the
component.

Keyword Value Description

setArea “solid”, “hole” Sets the active area for the linear component.

setFill “none”, “filled”,
“boundary”

Sets the active fill type for the linear
component.

setFillColor integer Sets the active fill color for the linear
component.

Keyword Value Description

setTextHeight double Sets the active text height for the component.

setTextWidth double Sets the active text with for the component.

setLineSpacing double Sets the active line spacing for the
component.

setCharSpacing double Sets the active character spacing for the
component.
B-8 MicroStation MDL Programmer’s Reference Guide

Appendix B: Settings Manager
Text Settings
setUnits double Sets the active units name ("mm" or "'") for
the component.

setTextAngle double Sets the active angle for the component.

setTextJust *values below Sets the single-line text justification for the
component. Possible values are:
"LT" - left top
"LC" - left center
"LB" - left bottom
"CT" - center top
"CC" - center center
"CB" - center bottom
"RT" - right top
"RC" - right center
"RB" - right bottom.

setNodeJust *values below Sets the multi-line text justification for the
component. Possible values are:
"LT" - left top
"LC" - left center
"LB" - left bottom
"LMT" - left margin top
"LMC" - left margin center
"LMB" - left margin bottom
"CT" - center top
"CC" - center center
"CB" - center bottom
"RT" - right top
"RC" - right center
"RB" - right bottom
"RMT" - right margin top
"RMC" - right margin center
"RMB" - right margin bottom.

setFont font name Sets the active font for the component.

setFractions “on”, “off” Sets fractions on or off for the component.

setLineLength integer Sets the active line length for the component.

setSlant double Sets the amount of slant for the component.

setVertical “on”, “off” Sets vertical text setting on or off for the
component.

setUnderline “on”, “off” Sets the underline text setting on or off for the
component.

setUsePaperSize “on”, “off” Sets the user paper size setting on or off for
the component.

Keyword Value Description
MicroStation MDL Programmer’s Reference Guide B-9

Appendix B: Settings Manager
Cell Settings
Cell Settings

These apply only to cell settings components and must be contained within a
"setCell" or "addCell" component block.

Example, Creating a Settings Manager Resource
Example file to create a Settings Manager resource

1. Any text following a ‘#’ character is considered a comment.

2. Keywords are case sensitive.

3. Each keyword must be placed with its value on a separate line (there
cannot be a line feed between the keyword and its value).

4. Maximum line length is 255.

5. Each "add" or "set" group or component keyword must have a matching
"end" keyword. Keywords in between the "add" and "end" group or
component keyword apply only to that group or component.

addGroup Example # create a new group
addLinear Linear Example # Create linear settings component
setCommand place smartline# place a smartline
setLevel 1 # on level 1

Keyword Value Description

setCellXScale double Sets the active scale in the X direction for the
component.

setCellYScale double Sets the active scale in the Y direction for the
component.

setCellZScale double Sets the active scale in the Z direction for the
component.

setApplyDrawingScale “on”, “off” Sets the apply drawing scale setting on or off
for the component.

setAllowSharedCells “on”, “off” Sets the use shared cells setting on or off for
the component.

setCellLibrary library name Sets the active cell library for the component.

setCellName cell name Sets the active cell name for the component.

setCellAngle double Sets the active angle in degrees for the
component.

setCellType “placement” Indicates whether the component refers to a
placement “terminator” or terminator cell.

setSharedCell “enabled”,
“disabled”

Indicates whether cells should be placed as
shared for the component.
B-10 MicroStation MDL Programmer’s Reference Guide

Appendix B: Settings Manager
Example, Creating a Settings Manager Resource
setColor 5 # color 5
endLinear # end linear component

addText Text Example # Create text settings component
setLevel 3 # set active level = 3
setColor 3 # set active color = 1
setHeight 2.0 # set active text height = 2
setLineLength 50 # set text line length = 50
setFont FANCY # set active font FANCY font (2)
setTextJust LT # set text just to left-top
setNodeJust CC # set text node just to center-center
endText # end text settings component

addCell Cell Example # create a cell settings component
setCommand place cell # place a cell
setCellName CHAIR2 # cell to place is CHAIR2
setCellLibrary remodel.cel # from the remodel library
setCellAngle 90 # at angle 90 degrees
setSharedCell enabled # place as a shared cell
endCell # end cell settings component

endGroup # end Example group

edit an existing Linear component
setLinear Linear Example# modify example linear settings component

setLevel 2 # changed my mind, place smartline on level 2
setStyle { Batten } # place smartline in Batten style

endLinear # end modifications
MicroStation MDL Programmer’s Reference Guide B-11

B-12 MicroStation MDL Programmer’s Reference Guide

Appendix C: MicroStation 95
Bentley has made an effort to introduce enhancements to MicroStation in a manner that
will impact the MicroStation community as minimally as possible. Our primary concern
is to ensure that existing MDL applications and MicroCSL programs are upwardly
compatible with this new version of MicroStation.

What follows is a brief, yet comprehensive, list of things that developers should take
into account regarding existing or new applications that will run on MicroStation.

To ease the burden on third-party MDL developers, MicroStation will be backward
compatible with MDL applications from V5 or MicroStation PowerDraft and should run
without recompiling on MicroStation. However, new features and optimizations will
prevent applications compiled on MicroStation from running on V5.

Developers are encouraged to enhance their applications to keep them consistent with
the new user interface and features of MicroStation. The dialog manager section that
follows, points out some cases where recompiling may be desired.

No new vector-based element types are introduced to the MicroStation design file
format. Type 90 raster elements associated with the reference raster file capability are
to be incorporated into MicroStation. Raster Reference was first introduced into Review.
It was subsequently released for MicroStation on the Vault.

Platform Changes
MicroStation will use Microsoft’s Win32s subsystem instead of Windows Connection to
run under Windows 3.1x. Win32s lets 32-bit programs run in a 16-bit environment. One
installation set will cover all Windows platforms: Windows 3.1, Windows NT and
Windows 95. This is contrary to V5, where Windows Connection used a DOS delivery
to run under Windows 3.1x. To develop new MDL applications to run on any Windows
platform (or to recompile existing applications), at least one copy of Windows 95 or
Windows NT is required. This is because it is not feasible to provide MicroStation MDL
development tools that run under Windows 3.1x.

Windows NT and Windows 95 are preemptive multi-tasking operating systems and
support similar APIs while Windows 3.1x only supports cooperative multi-tasking and
a subset of the Win32 API (Win32s). V5 NT applications should run without
MicroStation MDL Programmer’s Reference Guide C-1

Appendix C: MicroStation 95
MDL Compiler
recompiling on all MicroStation Windows platforms as long as the application does not
rely on multi-tasking or API services that are not included in Win32s.

MDL Compiler
The MDL Compiler has been tightened up with respect to the generation of compiler
warnings. As a result, applications that compiled warning-free with the MicroStation V5
MDL compiler might now generate warnings when compiled with the MicroStation
MDL compiler. The most commonly seen new warning will probably be:

“Function is missing a return statement.”

The most common occurrence of this warning will take place with functions that
implement commands. For example:

cmdName myFunction
{

(code to implement a command, with no return statement)
}

Functions that implement commands do not have return values, so they should be
defined as void. The function shown above is interpreted by the compiler as returning
an int value. To eliminate the warning in this case, redefine the command as:

cmdName void myFunction{(code…)}

Additional type checking
The MicroStation MDL compiler contains some type information about each MDL
built-in function. However, much better type checking can be obtained by using the
delivered function prototype files (.fdf). Bentley highly recommends the use of
function prototype files in all .mc source modules.

To enforce the use of .fdf files, the MDL compiler recognizes a pragma: noAnsiDeclOn.
This will enable strict ANSI function prototyping. This can also be effected from the
MDL compiler command line using the -r option as follows: -rnoAnsiDeclOn. The
pragma is used by default if a makefile includes mdl.mki. When ANSI function
prototyping is enforced, the following warning will result when a function is called
with no previous prototype:

“(function name) does not have an ANSI function declaration”.

The offending function call will need to be prototyped by the inclusion of a function
prototype file (.fdf) at the top of the source modules.
C-2 MicroStation MDL Programmer’s Reference Guide

Appendix C: MicroStation 95
Resource Files
Resource Files
No changes were made to the format of resource files. However, there is one minor
backwards compatibility issue with regard to using MicroStation resource files with V5
on a different platform. MicroStation resource files contain new information in their
data definition resources. This new information is necessary to properly translate
resource files when read on different platforms (different from where the file was
created). The fixes release version of MicroStation V5 understands this new
information, but older versions do not. Therefore, MicroStation resource files will not
work across multiple platforms with versions of MicroStation prior to V5.0.95 (V5.0.70
on the RS/6000). This does not apply when using the MicroStation resource file on a
single platform; in that case, they will work. The symptom of using a MicroStation
resource file on a platform where it is not supported is easily recognized; the resource
will fail to load.

If all your MicroStation seats are V5.0.95 or newer, then you can ignore this section on
Resource Files. Also, if your MicroStation resource files are going to be used on the
same platform as the one on which they were created, you can ignore this section. The
only feature that is not supported is using MicroStation resources with versions of
MicroStation older than V5.0.95 on a different platform from where the resource file
was created.

Resource Editing Tools
In V5.0 of MicroStation, the Dialog Builder was used to modify binary (.rsc) files.
Another application, Sourcer, was launched separately to convert those .rsc files into
source code (.r files). The V5 Sourcer would generate source files from scratch every
time, regardless of any existing source files.

In the new Resource Development Environment (RDE), Builder and Sourcer have been
joined together as part of a new source compatible resource editing system. Source
compatible means that existing source files will be updated. Source files can be opened
within RDE. RDE compiles the .r file and generates a list of resources, each of which
can be edited by a resource editor, such as the Dialog Builder.
MicroStation MDL Programmer’s Reference Guide C-3

Appendix C: MicroStation 95
Compatibility with macro customization
Other Development Facilities
This section briefly describes the impact that MicroStation has on MicroStation BASIC,
MicroCSL and user commands.

Compatibility with macro customization
MicroStation includes a new macro capability, macro record/playback, with which end
users can automate common sequences and tool usage. A macro is created by
monitoring the user's actions and writing a description of those actions to a BASIC
source file. The BASIC file can then be edited and executed many times to recreate the
same or similar results. These macros are BASIC programs, an emerging industry
standard.

Using these same macro tools, users should be able to customize third party
applications as well. To this end, application developers are urged to follow these
guidelines:

All commands soliciting user input should be organized as state machines. This, since
the new macro facility automatically records commands and variable access string
changes. For further control, MDL programmers will be able to publish additional
dialog hook results to the macro recorder.

Dialog items that queue commands or update access string variables when
manipulated are handled automatically by the macro tools. Therefore, this style of
dialog item implementation is encouraged.

Dialog items that make use of hook function processing will be least compatible with
macro customization. New item handler “journaling” messages are available in this
case. This allows an application to tell the macro tools how to save, and later execute,
the events. This journaling API will be documented at a later date.

MicroCSL

MDL is still the preferred development language. However, MicroCSL will continue to
be supported on all platforms. On DOS, only protected mode MicroCSL will be
supported. As forewarned in April 1994, DOS real mode MicroCSL is no longer
supported in versions of MicroStation beyond V5 (including MicroStation).

Like MDL applications, external protected mode and MicroCSL programs compiled for
DOS will work only with MicroStation for DOS. To use these programs under Windows
3.1x, they must be compiled as Windows NT executables.

Note that both Windows NT and Windows 95 are preemptive multi-tasking operating
systems and support similar APIs. Windows 3.1x supports only cooperative multi-
tasking and a subset of the Win32 API (Win32s). The differences are irrelevant for most
C-4 MicroStation MDL Programmer’s Reference Guide

Appendix C: MicroStation 95
User commands
external/MicroCSL programs, so these programs should run without recompiling on all
Windows platforms. However, programs that rely on multi-tasking or API services that
are not included in Win32s will be limited to running on Windows NT or Windows 95.

No enhancements will be made to MicroCSL for MicroStation. MicroCSL programs
created for V5 will continue to work; neither re-compilation or relinking should be
necessary.

User commands

No enhancements will be made to user commands for MicroStation. All current user
commands should continue to work. However, BASIC macros should be considered an
eventual successor to user commands.

File Open Dialogs
The file open dialogs for MicroStation and PowerDraft are modeled after the Windows
standard. The benefits include a visual directory hierarchy and descriptive filter
information. The calls to mdlDialog_fileOpen and mdlDialog_fileCreate are
unaffected unless the dialog has been customized. In this case, the dialog resource will
need to be updated to reflect the new dialog items and layout.

MicroStation PowerDraft and MicroStation utilize a different style of file open dialog.
It’s API and resource definition is very similar. Conversion will be straightforward.
MicroStation PowerDraft’s and MicroStation’s file open dialogs have the following
advantages:

Visual directory hierarchy

Descriptive filter information

Consistent with MicroSoft’s Office products

Although V5 (and V4) file open dialogs will be supported, they will be inconsistent
with MicroStation PowerDraft and MicroStation.

Other Trends

Tool consolidation is one method of reducing complexity without reducing
functionality. Utilization of the Tool Settings dialog is one of the most effective ways of
consolidating tools. Smart tools that perform context-sensitive operations are also
effective. The tool consolidations that occurred between V4 and V5 has been carried
even further for MicroStation and MicroStation PowerDraft. Application programmers
are encouraged to follow suit.
MicroStation MDL Programmer’s Reference Guide C-5

Appendix C: MicroStation 95
AccuDraw
While key-ins are the hallmark of the power user (and should remain available), there
are more intuitive command entry methods for the new or occasional user. In order to
de-emphasize key-ins for this type of user, all common commands should be
accessible through icons and all common settings should be available through dialog
boxes.

AccuDraw

MicroStation and MicroStation PowerDraft incorporate a new drawing tool called
AccuDraw. It allows precision geometry to be created without having to know
distances or having to create construction geometry. AccuDraw effectively replaces
many V5 settings (alignments, axis lock, unit lock, precision key-ins and the precision
input dialog box) by consolidating their functionality into a single entity. MDL
programmers will be able to optimize their application commands for use with
AccuDraw.

MicroStation vs. PowerDraft
MicroStation PowerDraft enhances the task of production drafting by adding several
new subsystems, however, it’s functionality remains a subset of MicroStation. As such,
PowerDraft MDL routines are contained in the MicroStation domain. The following
functions are outside of the PowerDraft subset and therefore not accessible to
PowerDraft MDL applications:

mdlBspline_xxx
mdlMaterial_xxx
mdlExternal_xxx
mdlDB_xxx
mdlTutorial_xxx
mdlImage_movieXXX

MDL applications not utilizing the above functions will execute without recompiling on
both PowerDraft and MicroStation.

Also external to the PowerDraft subset is support for DLMs and external programs. It
should be noted that PowerDraft is initially targeted for DOS and Windows (NT, 95 and
3.1) only. Naturally, MicroStation has no MDL, DLM or platform restrictions and will
support all new functionality described in this text.

Dialog Manager
Many of the dialog item handler functions formerly implemented in ditemlib.ml have
been repackaged as MDL built-in functions in MicroStation. Therefore, any
optimizations or fixes that may have been implemented in these functions will not be
realized by existing V5 MDL applications until those applications are re-compiled using
the MicroStation development tools.
C-6 MicroStation MDL Programmer’s Reference Guide

Appendix C: MicroStation 95
Command window vs. status bar
The following classes of DITEMLIB functions are affected:

mdlDialog_icFrame…
mdlDialog_icPalette…
mdlDialog_listBox…
mdlDialog_menuBar…
mdlDialog_textPDMItem…
mdlDialog_optionPDMItem…
mdlDialog_optionButton…
mdlDialog_pushButton…
mdlDialog_colorPicker…
mdlDialog_toggleButton…
mdlDialog_levelMap…
mdlDialog_radioButton…
and the single function, mdlDialog_labelSetAttributes

Command window vs. status bar

Version 5 allowed for a single user interface style, the command window. Version 95
allows for an additional interface style, the status bar. This is a Windows standard
interface introduced with PowerDraft. If applications adhere to established conventions
they will run without problem under either user interface style. The majority of existing
V5 applications need not be concerned by the user's choice of interface style and
should run right away. However, applications that directly reference the command
window's dialog pointer may need to make some minor updates. To understand how
MicroStation MDL Programmer’s Reference Guide C-7

Appendix C: MicroStation 95
Command window vs. status bar
to handle each of the interface styles, it is probably best to think about the (V5 and
V95) user interface in terms of 4 distinct regions and their associated routines.

Figure C.1 Status Bar interface - Error messages displayed where Command Name > Prompt displayed.

Keyin region Message/Status field

Command
Name > Prompt

Figure
C.2Command Window interface.

Key-in Region

Title bar
C-8 MicroStation MDL Programmer’s Reference Guide

Appendix C: MicroStation 95
Prompts and Messages
The Prompt Region is defined as the dialog box that displays messages and prompts.
The Prompt Region contains 5 fields - command name, prompt, message, status and
error. To output message strings to these fields, use the mdlOutput_XXX routines. The
only real impact with using the mdlOutput_XXX calls is that in the status bar interface
MESSAGE and STATUS fields overlay each other.

The Key-in Region is defined as the dialog box that contains the main MicroStation
key-in area. The Key-in Region applies to both interface styles, but is only required to
be open using the command window interface. As such, the associated routine
mdlDialog_keyinWindowGet, will never return NULL using the command window.
However, this function may return NULL when using the status bar interface if the Key-
in dialog is not open.

The Overall Title Bar Region is defined as the dialog box that displays the application
title (the name of the active design file) and houses MicroStation's main menu bar. The
associated routines with this region are mdlDialog_overallTitleBarGet and
mdlDialog_menuBarGetCmdWinP. mdlDialog_menuBarGetCmdWinP is still the correct way
for applications to find MicroStation's menu bar. Previous usage of
mdlDialog_menuBarAddCmdWinMenu to manipulate the main MicroStation menu bar is
unaffected no matter which user interface style is selected.

The fourth region, the Status Area Region, is defined as the region (on the right side of
the status bar) that displays the current snap, current level, etc. When using the
command window, this region does not exist. The associated routine with this region is
mdlDialog_statusAreaGet.

Prompts and Messages

One of the most noticeable differences between the interfaces of MicroStation V5 and
PowerDraft is message handling. While V5 has the command window, MicroStation
PowerDraft sends all messages to the status area located at the bottom of its
application window. This status area contains no key-in field, and consolidates the
prompts and messages into three areas. For this reason, it is important to examine the
messaging practices of each application that will run on MicroStation PowerDraft to
ensure there are no conflicts. Some things to consider:

The command and prompt messages display in the form [command]>[prompt].
Sending strings other than command names and prompts to these fields may produce
confusing messages.

Message, status and error strings display in the same field will conflict. Sending the
most important message last is a good idea, since it will overwrite the preceding ones.
If a status message must display at the same time as an error message, consider
opening a message box.

Only the display of prompts and messages has changed. The API (mdlOutput_error,
etc.) is unchanged.
MicroStation MDL Programmer’s Reference Guide C-9

Appendix C: MicroStation 95
Message Boxes
Message Boxes
Message boxes are the new means of displaying important information and include an
icon indicating message type in addition to actual message text. A new MDL routine,
mdlDialog_openMessageBox, obsoletes mdlDialog_openInfoBox and
mdlDialog_openAlert.

int mdlDialog_openMessageBox/* <= ACTIONBUTTON_xxx */
(
long dialogId /* => dialog ID of message box */
char *stringP /* => message to display */
long iconId /* => which icon to show */
);

In order to easily match button layout (Yes/No, OK/Cancel, etc.) with the message text,
the following choices are available:

DIALOGID_MsgBoxOK
DIALOGID_MsgBoxOKCancel
DIALOGID_MsgBoxYesNo
DIALOGID_MsgBoxYesNoCancel

In order to easily identify type or severity of the message, the following icons are
available:

MSGBOX_ICON_INFORMATION
MSGBOX_ICON_WARNING
MSGBOX_ICON_QUESTION
MSGBOX_ICON_CRITICAL

MicroStation PowerDraft uses message boxes instead of info boxes and alerts. Message
boxes have the following advantages:

Icon indicates type of message
Buttons more closely match messages
Consistent with MicroSoft Office products

The mdlDialog_openMessageBox function opens a modal dialog box which contains
one to three push buttons, a read-only multi-line text item that will be set to the string

Figure C.3 Yes/No/
Cancel Message Box.
C-10 MicroStation MDL Programmer’s Reference Guide

Appendix C: MicroStation 95
Message Boxes
pointed to by stringP, and one of four icons specified by whichIcon. It does not return
to it’s caller until the user closes the modal dialog box.

dialogId is the ID of the message box which will be displayed, and will be used to
specify which push buttons are included in the dialog. The following dialogId’s are
available for use with mdlDialog_openMessageBox:

mdlDialog_openMessageBox can also be used to display Icons in the following, (V4/
V5) dialogs. If, for example, you want to display a large information box - perhaps
because you have a very long message - you can use:

mdlDialog_openMessageBox(DIALOGID_LargeInfoBox, stringP,
MSGBOX_ICON_INFORMATION)

DIALOGID_StandardAlert
DIALOGID_MediumAlert
DIALOGID_LargeAlert
DIALOGID_StandardInfoBox
DIALOGID_MediumInfoBox
DIALOGID_LargeInfoBox
DIALOGID_YesNoCancelAlert

stringP is the multi-line text string to be displayed as the alert message of the dialog.

whichIcon specifies the raster icon to be drawn in the dialog box to the left of the alert
message.

MdlDialog_openMessageBox automatically detects the current GUIMODE and displays
icons appropriate to Windows or Motif interface styles.

dialogId description

DIALOGID_MsgBoxOK The message box contains one button: OK.

DIALOGID_MsgBoxOKCancel The message box contains two buttons: OK and
Cancel.

DIALOGID_MsgBoxYesNo The message box contains two buttons: Yes and
No.

DIALOGID_MsgBoxYesNoCancel The message box contains three buttons: Yes, No
and Cancel.
MicroStation MDL Programmer’s Reference Guide C-11

Appendix C: MicroStation 95
MSGBOX_ICON_INFORMATION
MSGBOX_ICON_INFORMATION

Provides information about the results of commands. Offers no user choices; user
acknowledges message by pressing OK button. This means that the information
symbol will nearly always appear in the MsgBoxOK dialog, for example:

mdlDialog_openMessageBox(DIALOGID_MsgBoxOK, stringP,
MSGBOX_ICON_INFORMATION);

MSGBOX_ICON_WARNING

Alerts user to an error condition or situation that requires user decision and input
before proceeding, such as an impending action with potentially destructive,
irreversible consequences. The Message can be a question, for example, “File exists.
Overwrite brake.dgn?”.

MSGBOX_ICON_QUESTION

Alerts user to an error condition or situation that requires user decision and input
before proceeding, such as an impending action with potentially destructive,
irreversible consequences. The Message can be a question, for example, “Save changes
to brake.dgn?”. Some applications may find the question mark symbol more
appropriate if the alert is in the form of a question. However, note that the question
mark is also used as a help symbol and may therefore confuse users.

MSGBOX_ICON_CRITICAL

Informs user of a serious system-related or application-related problem that must be
corrected before work can continue with the application.

mdlDialog_openMessageBox returns ACTIONBUTTON_OK, ACTIONBUTTON_Cancel, etc. or
returns -1 if failure.

Although calls to mdlDialog_openInfoBox and mdlDialog_openAlert will be
supported, the resulting dialog will be inconsistent with MicroStation PowerDraft.
C-12 MicroStation MDL Programmer’s Reference Guide

Index
A
AccuDraw C-6
Adobe Systems, Inc. A-30
alias pragma see pragmas, alias
Alphabets

 see Character Sets
ANSI (American National Standards

Institute) 12-1
application architecture 3-7

primitive commands 3-7
user interface 3-7
utility commands 3-7

application files 8-1
application task identifier 1-8

overview 1-8
task ID 1-8

application variables 15-2, 15-10
referencing 15-10
synonym resources 15-3

ASCII (American Standard Code for
Information

Interchange) 10-10
ASCII Character Set A-3
Asian Character Set

see Character Sets
AutoCAD Shape Files A-35

B
Balloon Help

 see Tool Boxes, tool tips
BDF (Basic Distribution
Format) A-30
bdf2snf A-30
bdos 23-1, 23-3
Bidirectionality

see Special Considerations
big endian format 6-29
binary portability

big endian format 6-29
bitfield representation 6-29
byte ordering 6-29
defined 6-27
floating point standards 6-29
internal data
representations 6-28
little endian format 6-29
storage of data types 6-28

bitfield handling 5-14
bmake 7-1

conditionals 7-7
dependency format 7-6
include files 7-8
macro definition 7-4
macro substitution 7-4
overview 7-2
predefined macros 7-5
reserved macros 7-4
rules format 7-6
starting the bmake utility 7-9

bmake utility 15-21
building applications 7-1

bmake 7-1
makefiles 7-1

built-in functions 1-2
built-in variables 1-2
built-ins see DLM, specific terms
button group item see dialog box

items, button group item

C
C expression handling 15-10

rsctype utility 15-10
strings 15-10

C Programming Language 5-1
contrasted to MDL 5-1

C Programming Language and
MDL see MDL and the

C Programming Language
Case Conversion

see Wide Character Functions
Cell Names A-38
Character Encoding A-3

C

C

C

c
c
C
c
c

C

c
b
c

c

c

c

c

MicroStation MDL
definition A-3
Macintosh A-4
mapping A-3, A-4

haracter Sets A-2
Asian Character Set A-5
bytes required per character

A-2, A-5
haracter Translation Table A-4

CHARTRAN A-4
HARTRAN

see Character Translation
Table

heck box see toggle button
heck button see toggle button
mdItemListRsc 16-75
mdName keyword 1-10, 5-2, 8-4
mdNumber keyword 1-10,
5-2, 7-17, 8-4
odeset Handler A-6

MS_CODESET environment
variable A-6

SETLANG utilitiy A-6
olor picker item see dialog
ox items
olor picker pull-down menu see

dialog box items, color picker
pull-down menu

ommand functions
cmdName keyword 1-10
cmdNumber keyword 1-10

ommand parsing 6-2, 6-14
mdlParse_load
CommandTable 6-15
mdlParse_loadKeywordTable

6-15
mdlParse_unloadTable 6-15

ommand processing 3-6
immediate commands 3-6
primitive commands 3-6
utility commands 3-6

ommand table editor 2-1, 4-1, 4-2
edit menu 4-4
 Programmer’s Reference Guide i-1

D

editing existing command
tables 4-2
file menu 4-2
overview 4-2

command tables 1-6, 1-10, 2-1, 6-2
command class 7-13
compiliation of 7-11
creation of using command
table editor 2-1
example of 7-12, 18-16

Command Window C-7
common item resource fields 16-8

accessStr 16-8
commandNumber 16-8
commandSource 16-8
helpInfo 16-8
helpSource 16-8
itemHookArg 16-8
itemHookId 16-8
label 16-8
synonymsId 16-8
unparsed 16-8

Compiler
 see MDL Compiler

Compiling Translated Resource
Files A-47

complex elements 11-1
headers 11-4

conditionals see bmake
Context Sensitive Characters

see Special Considerations
copyFromReal 23-4
copyToReal 23-4

D
Data Input A-7

file input A-10
keyboard input A-7
obtaining from users A-8
special characters A-9
writing direction A-8

database column names A-38
database manipulation 22-1

overview 22-1
SQL database interface see

SQL database interface
database servers see MicroStation

database servers
dBase A-38
DBTYPE resource 22-11
debugger see MDL debugger 9-1
DEC Multinational ASCII

see ASCII Character Set
Default Header Files dialog
box 4-20
dependencies see bmake
design file elements 11-1

complex elements 11-1, 11-4
element range 11-4

Developing and Testing A-49
hardware A-49
software A-49

dialog box builder 2-2, 4-1, 4-4
alignment menu 4-13
edit menu 4-7
overview 2-2, 4-4
tools palette 4-14
window menu 4-14

dialog box coordinate system 15-14
DCOORD_RESOLUTION
15-14
dialog coordinate units 15-14
pixel units 15-14
XC 15-14
YC 15-14

Dialog Box Design A-38
string expansion A-39

dialog box item 16-1
composition of 15-8
coordinates of within dialog

box 15-14
keyboard focus 15-13
list specification 15-8
resource specification 15-8
state of 15-9
synchronization 15-12
synonym resources 15-12

dialog box items 15-1
application variables 15-1
button group item 16-93
color picker item 15-3, 16-38
color picker pull-down menu

16-2, 16-55
common fields see common

item resource fields

creation of 15-1
example of 18-1
generic item 16-2, 16-90
group box item 16-1, 16-11
hook functions 15-1, 15-4
icon command 16-2
icon command frames 16-2
item list specification 15-3
label item 16-1, 16-9
level map item 16-41
list box item 16-2, 16-77
menu bar item 16-43
multi-line text item 16-1, 16-33
option button item 16-1, 16-21
option pull-down menu 16-52
overview 15-1
popup menu item
16-2, 16-104
radio button item 16-106
sash item 16-2, 16-98
scale item 16-100
scroll bar item 16-1, 16-26
separator item 16-1, 16-12
text item 15-3, 16-1, 16-28
text pull-down menu 16-47
toggle button 15-2
toggle button item 16-1, 16-13
tool palette 15-3, 16-2, 16-57

dialog box manager 6-16
application variables 15-2
contrasted to other
GUIs 15-1, 15-2
creating MDL
applications 15-1
creation of dialog boxes 15-2
dialog box items 15-2
dialog item handler 15-17
dialog items 15-1
example dialog box
application 15-2, 15-21
example of use 18-1
guidelines 15-2
hook functions 15-1, 15-17
input loop 15-4
internal architecture 15-16
internationalization
concerns 15-5
item handlers 15-2, 15-17
i-2 MicroStation MDL Programmer’s Reference Guide

D

item list specification 15-3
mdlDialog_open 6-16
MicroStation windows 15-6
modification of application

state variables 15-1
overview 6-16, 15-1
portability concerns 15-5, 15-7
recommended reading 15-22
related MDL functions 15-2
resource manager 15-7
resources 15-7
reusing dialog items 15-3
synchronization 15-9
synonym resources 15-3
user interaction
explanation 15-16

dialog box manager functions
15-16
dialog box manager header
files 15-19

dlogbox.h 15-19
dlogids.h 15-19
dlogitem.h 15-19
dlogman.fdf 15-19

dialog box manager hook
functions 17-1

button messages 17-20
dialog hook functions 17-1
focus messages 17-10
item hook functions 17-1
miscellaneous messages 17-26
non-requested messages 17-6
open & close messages 17-24
overview 17-1
size messages 17-16
types of 17-1

dialog box manager internal archi-
tecture 15-16
dialog box manager
functions 15-16
hook functions 15-16, 15-17
item handler functions 15-16
messages 15-16
sub-systems of 15-16

dialog box manager library 15-19
dialog box style guidelines 19-1

appearance concerns 19-2
helpful suggestions 19-1

internationalization
concerns 19-1
modeless vs. modal dialog

boxes 19-2
overview 19-1
push buttons 19-3

dialog boxes 1-6, 1-10
color 15-16
coordinates 15-14
creation of 15-2, 15-20
creation of using dialog box

builder 2-2
designing dialog boxes 3-5
example dialog box
application 15-2
example of modeless dialog

box 18-1
fonts 15-16
hook functions 15-4
mdlDialog_hookPublish 15-20
modal dialog boxes 15-9
modeless dialog boxes 15-9
modification concerns 15-7
overview 15-1, 15-6
portability concerns 15-5
sinking 15-13
synonym resources 15-3

dialog button items
push button item 16-16

dialog coordinate units see dialog
box coordinate system

dialog hook function
 messages 17-4

DIALOG_MESSAGE_ACTION
BUTTON 17-23

DIALOG_MESSAGE_
ACTIVATE 17-15
DIALOG_MESSAGE_ANOTHE

RCLOSED 17-25
DIALOG_MESSAGE_ANOTHE

ROPENED 17-25
DIALOG_MESSAGE_BEFORE

DESTROY 17-8
DIALOG_MESSAGE_BUTTON

 17-20
DIALOG_MESSAGE_
CALCSIZE 17-17

DIALOG_MESSAGE_CHILDD
ESTROYED 17-24

DIALOG_MESSAGE_CREATE
17-6

DIALOG_MESSAGE_
DESTROY 17-9
DIALOG_MESSAGE_
FOCUSIN 17-11
DIALOG_MESSAGE_
FOCUSOUT 17-11
DIALOG_MESSAGE_
FONTCHANGED 17-18
DIALOG_MESSAGE_
HIDE 17-9
DIALOG_MESSAGE_INIT 17-8
DIALOG_MESSAGE_
ITEMFOCUSIN 17-12
DIALOG_MESSAGE_
ITEMFOCUSOUT 17-13
DIALOG_MESSAGE_
KEYSTROKE 17-14
DIALOG_MESSAGE_
MAXIMIZE 17-19
DIALOG_MESSAGE_
MINIMIZE 17-19
DIALOG_MESSAGE_
PREBUTTON 17-20
DIALOG_MESSAGE_RESIZE

17-17
DIALOG_MESSAGE_
STATECHANGED 17-26
DIALOG_MESSAGE_SYNCH

17-26
DIALOG_MESSAGE_UPDATE

17-26
DIALOG_MESSAGE_USER
 17-27

dialog hook functions 15-17, 17-1,
17-2
DialogMessage structure 17-2
example of 17-2
ID numbers 15-18
message handling 15-17
messages see dialog hook

function messages
overview 15-17, 17-1
MicroStation MDL Programmer’s Reference Guide i-3

D

dialog item handler 15-17
passing messages 15-17
purposes of 15-17

dialog item list specification 15-8
dialog item resource specification

15-8
overview 15-8

Dialog Manager C-6
command window C-7
key-in region C-9
message handling C-9
overall title bar region C-9
prompt region C-9
status area region C-9
status bar C-7

dialog manager hook
functions 1-10
DialogBoxRsc structure 16-2
DialogItem structure 17-29
DialogItemMessage structure 17-28
DialogItemRsc structure 16-6
DialogMessage structure 17-2
Direction of Writing A-8

MS_RIGHTLOGICKB A-8
directory structure 3-8
DItem_IconCmdFrameXRsc 16-67
DItem_IconCmdRsc 16-67
DITEMLIB

mdlDialog_colorPicker C-7
mdlDialog_icFrame C-7
mdlDialog_icPalette C-7
mdlDialog_labelSetAttributes

C-7
mdlDialog_levelMap C-7
mdlDialog_listBox C-7
mdlDialog_menuBar C-7
mdlDialog_optionButton C-7
mdlDialog_optionPDMItem
 C-7
mdlDialog_pushButton C-7
mdlDialog_radioButton C-7
mdlDialog_textPDMItem C-7
mdlDialog_toggleButton C-7

DITEMLIB Functions C-7
DLM

 see Dynamic Link Modules
DLM (Dynamic Link Module)
 1-6, 20-1

accessing MicroStation
built-ins 20-3
application resources 20-11
calling into other DLM’s 20-27
Clipper specifics see DLM

Clipper specifics
debugging 20-28
DLM functions 20-29
DLM hook functions see DLM

hook functions
DLM memory functions
 see DLM memory functions
dlmSystem_displayError 20-12
dynamic link source file 20-10
error reporting function 20-12
example DLM 20-10
file functions see DLM file

functions
function pointers 20-5
HP700 specifics see DLM

HP700 specifics
IBM RS/6000 specifics see

DLM IBM RS/6000
 specifics
linking with MDL applications

20-4
MDL asynchronous functions

20-12
MDL compiler 20-3
overview 20-1
PC protected mode specifics

see DLM PC
 protected mode specifics
platform specifics overview

20-13
programming concerns 20-2
runtime concerns 20-4
Silicon Graphics specifics see

DLM Silicon Graphics
specifics
SPARCstation specifics see

DLM SPARCstation
specifics
specific terms 20-1
use with shared libraries 20-1
uses of 20-1
uses with C++ 20-1

Windows NT specifics see
DLM Windows NT

specifics
DLM Clipper specifics 20-13

C++ DLM specifics 20-14
overview 20-13
static constructor functions
20-14
static destructor functions
20-14
unload handler function 20-16

DLM file functions 20-30
dlmSystem_callMdlFunction

20-31
dlmSystem_setFunction 20-31
initialize 20-32
overview 20-30
userHook_dlmUnload 20-33
userHook_mdlUnload 20-33

DLM hook functions 20-12
dlmSystem_setFunction 20-12
initialize function 20-12
overview 20-12

DLM HP700 specifics 20-18
C++ DLM specifics 20-19
debugging 20-18
overview 20-18

DLM IBM RS/6000 specifics
C++ DLM specifics 20-25
debugging 20-26
dlmSystem_
publishSymbolNames 20-26
overview 20-23

DLM memory functions
dlmSystem_mdlCalloc 20-30
dlmSystem_mdlFree 20-30
dlmSystem_mdlMalloc 20-30
dlmSystem_mdlRealloc 20-30

DLM PC protected mode specifics
C++ DLM specifics 20-20
overview 20-19

DLM Silicon Graphics specifics
C++ DLM specifics 20-23
debugging 20-23
overview 20-22

DLM SPARCstation specifics
C++ DLM specifics 20-17
debugging 20-17
i-4 MicroStation MDL Programmer’s Reference Guide

E

overview 20-16
solaris 20-17
SunOS 20-16

DLM Windows NT specifics
C++ DLM specifics 20-22

dlmspec Utility 20-8, 21-12
dlmspec utility

commands 20-8
dlmSystem_callMdlFunction 20-12,

20-31
dlmSystem_displayError 20-12
dlmSystem_mdlCalloc 20-30
dlmSystem_mdlFree 20-30
dlmSystem_mdlMalloc 20-30
dlmSystem_mdlRealloc 20-30
dlmSystem_setFunction 20-12, 20-

31
DLS

 see Dynamic Link
Specification

DLS (Dynamic Link Specification)
see DLM (Dynamic Link

Module), specific terms
documentation 10-1

glossary of terms 10-9
help creation tools 10-1
hints 10-7, 10-9
methods of 10-1
overview 10-1
principles 10-7
tagging of character strings
10-1
tagging of paragraphs 10-1

DOS interface functions 23-1
bdos 23-1, 23-3
copyFromReal 23-4
copyToReal 23-4
example of 23-2
int86 23-1, 23-2
int86PassThrough 23-1, 23-3
intdos 23-1, 23-2
overview 23-1
Phar Lap DOS extender 23-1
segread 23-4

DS (database service) requests
DS_AdditionalRequest 22-8
DS_CloseCursor 22-7
DS_CloseDatabase 22-4

DS_CommitTransaction 22-6
DS_CopyTable 22-8
DS_DatabaseProfile 22-3
DS_DebugMode 22-8
DS_DescribeColumn 22-5
DS_DescribeDatabase 22-4
DS_DescribeTable 22-5
DS_FetchRow 22-7
DS_GetErrorInformation 22-8
DS_OpenCursor 22-6
DS_OpenDatabase 22-4
DS_ProcessForm 22-7
DS_ProcessStatement 22-6
DS_RollbackTransaction 22-6
DS_Terminate 22-4

Dynamic Link Modules 21-1
Dynamic Link Specification 21-3

accomodating MDL shared
libraries 21-12

dynamic link specification source
files 20-8
defines 20-8
dlmspec utility 20-8

dynamic resources 6-7

E
element descriptors 11-1

design file elements 11-1
functions using 11-4
header information 11-1
memory allocation 11-1
memory concerns 11-5
msElementDescr structure
11-1
overview 11-1
recursive programming 11-4
recursive programming
example 11-4
uses of 11-1
validation of header data 11-4

Engineering Standards A-1
EUC

see Extended UNIX Code
event driven programming
1-5, 1-13

input handlers 1-14
input loop 1-13

input queue 1-14
processing events 1-14
task ID dispatcher 1-14

example DLM application
dlink 20-10

example MDL applications 1-14
basic.ma 18-1
building example applications

14-2
calculat 14-2
chngtxt 14-1, 14-4
dlogdemo 14-3, 14-4, 15-21
dosfunc.mc 23-2
iconedit 15-21
MS environment variable 14-2
newitems 16-103
plashape 14-1
rasticon 14-1, 16-90
running example applications

14-2
trumpet 14-1

exception handling 1-8
faults detected by MDL 1-8
faults detected by operating

system 1-8
Extended ASCII

see ASCII Character Set
Extended UNIX Code A-5
external state see state, dialog
box item

F
FDF (Function Definition File) see

MDL and the C Programming
Language

fgetwc A-20
fgetws A-20
File Input A-10

database files A-10
text files A-10
UCM files A-10
UNIX platforms A-10

File Open Dialogs C-5
file types 1-9

C source files 1-9
command functions 1-9
extensions 1-11
MicroStation MDL Programmer’s Reference Guide i-5

G

main function 1-9
resource source files 1-9, 1-10
state functions 1-10

fillers 6-4, 6-6
Flyover Help

 see Tool Boxes, tool
descriptions

focus see keyboard focus
FONTEDIT A-35
Fonts A-29
fonts see dialog boxes
fputwc A-20
fputws A-20
FrameMaker 10-2
fwprintf A-20
fwscanf A-20

G
generic item see dialog box items,

generic item
getch A-8
getwc A-8, A-20
getwchar A-20
getws A-20
group box item see dialog box

items, group box item
GUI (Graphical User Interface)
1-3, 6-2, 15-1

Macintosh 15-5
MicroSoft Windows 15-5
Motif 15-5
X-Windows 15-5

H
help text 1-6
help tools see on-line help
high-level MDL application
development 3-2

design tools 3-2
element placement 3-2
manipulation tools 3-2
settings boxes 3-2
user input 3-2

hook function messages 19-4
mdlDialog_dmsgsPrintDialog

Msg 19-6

mdlDialog_dmsgsPrintItemMs
g 19-6

mdlDialog_dmsgsSet 19-5
tracking 19-4

hook functions 1-2, 15-1, 15-16,
15-17
debugging 19-3
dialog box manager message

dialog 19-3
dialog hook functions 17-1
dialog hook functions see dia-

log hook functions
dialog manager hook
functions 1-10
ID numbers 15-18
item hook functions see item

hook functions
mdlDialog_hookPublish 15-19
number space 15-18
return type 17-1
uses of 15-1, 15-4
when required 15-4

I
I/Help file format (Intergraph

Help) 10-2
creation of 10-2
portability 10-2

Icon Command Resources 16-75
CmdItemListRsc 16-75
IconCmdRscs 16-75

icon editor 2-2, 4-1, 4-14
edit menu 4-16
file menu 4-15
import menu 4-16

IconCmdRscs 16-75
error in 16-75
recommendation when using

CmdItemListRsc 16-75
icons 2-2

creation of using icon editor
 2-2

Ident pragma see pragmas, Ident
If A-30
immediate commands 3-6
Include Files 4-19

default files 4-20

incompatiblePointerParameters see
pragmas,

incompatiblePointerParameters
incompatiblePointers see pragmas,

incompatiblePointers
incompatibleReturn see pragmas,

incompatibleReturn
initialize 20-12, 20-32, 21-13
input handlers 1-14
input queue 1-14
int86 23-1, 23-2
int86PassThrough 23-1, 23-3
intdos 23-1, 23-2
internal state see state, dialog

box item
International Standards
Organization A-15
Internationalization A-1

definition of A-1
introduction A-1
misconceptions A-1
overview A-2
recommendations A-2
requirements A-7

internationalization concerns 15-5
isalnum A-16
isalpha A-16
iscntrl A-16
isdigit A-16
isgraph A-16
islower A-16
isprint A-16
ispunct A-16
isspace A-16
iswalnum A-16
iswalpha A-16
iswcntrl A-16
iswdigit A-16
iswgraph A-16
iswlower A-16
iswprint A-16
iswpunct A-16
iswspace A-16
iswupper A-16
iswxdigit A-16
isxdigit A-16
i-6 MicroStation MDL Programmer’s Reference Guide

K

item handler see dialog item
 handler
item handler functions 15-16
item hook function messages 17-34

DITEM_MESSAGE_ACTIVATE
 17-54

DITEM_MESSAGE_
ALLCREATED 17-37
DITEM_MESSAGE_BUTTON

17-42
DITEM_MESSAGE_CREATE

17-36
DITEM_MESSAGE_DESTROY

17-38
DITEM_MESSAGE_DRAW
 17-51
DITEM_MESSAGE_FOCUSIN

17-46
DITEM_MESSAGE_
FOCUSOUT 17-47
DITEM_MESSAGE_
FONTCHANGED 17-53
DITEM_MESSAGE_GETSTATE

 17-38
DITEM_MESSAGE_
GETVALUE 17-50
DITEM_MESSAGE_HIGHLIG

HT 17-51
DITEM_MESSAGE_INIT 17-37
DITEM_MESSAGE_JOURNALS

TATE 17-45
DITEM_MESSAGE_KEYSTRO

KE 17-48
DITEM_MESSAGE_MOVE
17-52
DITEM_MESSAGE_POSTKEY

STROKE 17-50
DITEM_MESSAGE_
QUEUECOMMAND 17-41
DITEM_MESSAGE_
SETENABLEDSTATE 17-53
DITEM_MESSAGE_SETEXTEN

T 17-52
DITEM_MESSAGE_SETLABEL

17-50
DITEM_MESSAGE_SETSTATE

17-39

DITEM_MESSAGE_SETVALUE
 17-51

DITEM_MESSAGE_S
TATECHANGED 17-41
DITEM_MESSAGE_
SYNCHRONIZE 17-41
DITEM_MESSAGE_USER
 17-42

item hook functions
 15-17, 17-1, 17-28

DialogItem structure 17-29
DialogItemMessage structure

17-28
example of 17-28
general item messages 17-36
generic item messages 17-50
ID numbers 15-18
input focusable messages
 17-46
item hook function messages

17-34
message handling 15-17
overview 15-17, 17-1
RawItemHdr structure 17-32

item list specification 15-3

K
keyboard focus 15-13
Keyboard Input A-7

Asian languages A-8
European languages A-7

L
label item see dialog box items,
label item
Languages

categories A-2
level map item see dialog box

items, level map item
library files (.ml) 7-24
linking MDL applications 7-24

mdlInput_waitForMessage
7-26

list box item see dialog box items,
list box item

List Boxes 16-84
modifying to include icons
16-85

little endian format 6-29, 6-31
Locale A-13
Locale Initialization Functions

setlocale A-15
Locale Initization Functions A-15
Localization A-1

M
Macintosh Encoding

see Character Encoding
Macros 4-16
macros see bmake
main function 1-9
makefile record types 7-3

conditionals 7-3
dependencies 7-3
macros 7-3, 7-4
rule 7-3

makefiles 7-1, A-42
creation of 7-2
example of 7-3, 18-24
format of 7-3

mblen A-15
mbstowcs A-14, A-16
mbtowc A-14
mcomp 5-1, 7-21

action upon encountering
char 5-1

automatic variable memory
limitation 5-2

bitfields 5-2, 5-14
cmdName keyword 5-2
cmdNumber keyword 5-2
command line syntax 7-21
enumerated types 5-2
float data type 5-2
MDL_COMP environment

variable 7-22
options 7-21
overview 7-21
preprocessor directives 5-2
special considerations when

using preprocessor
 directives 5-2
MicroStation MDL Programmer’s Reference Guide i-7

M

storage class specification 5-2
structures as function
arguments 5-1
structures as function return

values 5-1
upon encountering short data

type 5-1
MDE editing tools 4-1

command table editor 4-1
dialog box builder 4-1
icon editor 4-1
string list editor 4-1

MDE on-line help 2-2
MDE workspace 2-1

overview 2-1
tools menu 2-1

MDL (MicroStation Developer’s
Language) 5-1
bitfield handling see bitfield

handling
contrasted to C Programming

Language 5-1
structures see structure
handling

MDL and the C Programming
Language

analogous MDL functions 12-1
formatting strings 12-2
Function Definition Files 12-3
standard header files 12-1
stderr 12-1
stdin 12-1
stdout 12-1
supported C functions 12-1

MDL application development
1-12, 2-1, 3-1

consideration of user 3-1
database considerations 3-2
functional specification 3-1
getting started 3-1
object attributes 3-2
object definition 3-1
object manipulation 3-2
object placement 3-2
project task list 3-3
tools 2-1

MDL application development see
high-level MDL application

development
MDL application development
approaches 1-12

advantages of each 1-12
MDL application organization 1-12

approaches to MDL
development 1-12

MDL applications 1-5
debugging 9-1
documenting of 10-1
dynamic link modules 1-6
external programs 1-7
loading and unloading of
 8-1, 8-3
MDL application defined 1-5
MDL program defined 1-5
MDL task defined 1-5
on-line help creation 10-2
parts of 3-7
primitive commands 3-7
running of 8-1
user interface 3-7
utility commands 3-7

MDL built-in variables 13-1
defining of non-base type

built-in variables 13-1
global variables 13-1
read-only variables 13-1

MDL Command Names A-38
MDL Compiler C-2

changes to C-2
compiler warnings C-2

MDL debugger 9-1
first time debugging 9-1
input to 9-2
output 9-2
overview 9-1
PC concerns 9-2
preparing input to 9-4
setup 9-2
source code searching 9-3
unix concerns 9-2

MDL development utilities 1-9
MDL function pointers 1-8

MDL fundamentals 1-2
advantages over MicroCSL 1-3
built-in functions 1-2
C programming language 1-2
event driven programming 1-5
GUI 1-3
hook functions 1-2
overview 1-2
portability 1-3
resource manager 1-3

MDL librarian see mlib utility
MDL overview 1-1

application task identifier 1-1
file types 1-1, 1-9
MDL application organization

1-1, 1-12
MDL applications 1-1
MDL development utilities
1-1, 1-9
MDL fundamentals 1-1
MDL runtime environment 1-1

MDL runtime environment 1-7
accessing files 1-7
dynamic memory concerns
1-7
exception handling 1-8
MDL function pointers 1-8
overview 1-7

MDL Shared Libraries
applications 21-1
creation of 21-2
determining when MDL
program is unloaded 21-10
DLM comparison 21-1
hook functions 21-13
linking MDL programs to 21-3
loading 21-6
mdlDialog_callFunction
21-2, 21-13
non-switch function calls
21-13
non-switched function calls

21-2
overview 21-1
runtime concerns 21-13
switched function calls
21-2, 21-13
unloading 21-9
i-8 MicroStation MDL Programmer’s Reference Guide

M

mdlCExpression_symbolPublish
15-10

mdlCharTran_
internalDisplayToNative A-10
mdlCharTran_
nativeToInternalDisplay A-10
mdlCnv_bufferFromFileFormat

 6-32, 6-33
mdlCnv_toScanFormat 6-32
mdlDB_activeDatabase 22-12
mdlDB_readColumn A-10
mdlDB_writeColumn A-10
mdlDialog_callFunction 21-2
mdlDialog_colorPickerGetInfo
 16-41
mdlDialog_colorPickerSetInfo
16-41
mdlDialog_dmsgsClear 19-4
mdlDialog_dmsgsPrint 19-4
mdlDialog_dmsgsPrintDialogMsg

19-6
mdlDialog_dmsgsPrintItemMsg
 19-6
mdlDialog_dmsgsSet 19-5
mdlDialog_fileCreate C-5
mdlDialog_fileOpen C-5
mdlDialog_hookPublish
 15-19, 15-20
mdlDialog_icFrameGetItemInfo

16-60
mdlDialog_icFrameGetNItems
 16-60
mdlDialog_icFrameGetNSubItems

16-60
mdlDialog_icFrameSelectIcon
 16-60
mdlDialog_icFrameSetItemInfo
 16-60
mdlDialog_icPaletteGetItemInfo

16-62
mdlDialog_icPaletteGetNItems
 16-62
mdlDialog_icPaletteSelectIcon
 16-62
mdlDialog_icPaletteSetItemInfo

16-62

mdlDialog_itemGetByTypeAndId
16-10, 16-11, 16-12

mdlDialog_itemGetValue 16-37
mdlDialog_itemSetLabel
 16-9, 16-11
mdlDialog_itemSetValue 16-37
mdlDialog_keyinWindowGet C-9
mdlDialog_levelMapGetInfo 16-43
mdlDialog_levelMapSetInfo 16-43
mdlDialog_listBoxDeleteAll 16-83
mdlDialog_listBoxDeleteColumn

16-83
mdlDialog_listBoxDrawContents

16-83
mdlDialog_listBoxEnableCells
 16-83
mdlDialog_listBoxGetColInfo
 16-83
mdlDialog_
listBoxGetDisplayRange 16-83
mdlDialog_listBoxGetInfo 16-83
mdlDialog_
listBoxGetLocationCursor 16-83
mdlDialog_listBoxGetNColumns

16-83
mdlDialog_listBoxGetNextSelectio

n 16-83
mdlDialog_listBoxGetSelections

16-84
mdlDialog_listBoxGetSelectRange

16-84
mdlDialog_listBoxGetStrListP
 16-84
mdlDialog_listBoxInsertColumn

16-84
mdlDialog_listBoxIsCellEnabled

16-84
mdlDialog_listBoxIsCellSelected

16-84
mdlDialog_listBoxLastCellClicked

16-84
mdlDialog_listBoxNRowsChanged

16-84
mdlDialog_listBoxSelectCells 16-84
mdlDialog_listBoxSetColInfo 16-83
mdlDialog_listBoxSetInfo 16-83
mdlDialog_listBoxSetLocationCurs

or 16-83

mdlDialog_listBoxSetSelections
 16-84
mdlDialog_listBoxSetStrListP
 16-77, 16-84
mdlDialog_listBoxSetTopRow
 16-84
mdlDialog_
listBoxSetTopRowRedraw 16-84
mdlDialog_
listRowNRowsChanged 16-78
mdlDialog_menuBarAddAppMenu

 16-45
mdlDialog_menuBarAddCmdWin

Menu 16-45, C-9
mdlDialog_menuBarAttachMenu

16-46
mdlDialog_
menuBarDeleteAllItems 16-46
mdlDialog_
menuBarDeleteAllMenus 16-46
mdlDialog_
menuBarDeleteCmdWinMenu
 16-46
mdlDialog_menuBarDeleteItem

16-46
mdlDialog_menuBarDeleteMenu

16-46
mdlDialog_menuBarDetachMenu

16-46
mdlDialog_menuBarFind 16-46
mdlDialog_
menuBarFindAppMenu 16-46
mdlDialog_menuBarFindItem
 16-46
mdlDialog_menuBarFindMenu
 16-46
mdlDialog_menuBarGetCmdWinP

16-46, C-9
mdlDialog_menuBarGetItem 16-46
mdlDialog_menuBarGetMenu
 16-46
mdlDialog_menuBarGetNItems
 16-46
mdlDialog_menuBarGetNMenus

16-46
mdlDialog_menuBarGetSelection

16-46
MicroStation MDL Programmer’s Reference Guide i-9

M

mdlDialog_menuBarInsertMenu
16-46

mdlDialog_menuBarInsMenu
 16-46
mdlDialog_
menuBarMenuGetEnabled 16-46
mdlDialog_menuBarMenuGetTitle

16-47
mdlDialog_
menuBarMenuSetEnabled 16-47
mdlDialog_menuBarMenuSetTitle

16-47
mdlDialog_mlTextGetCursor 16-38
mdlDialog_mlTextGetInfo 16-38
mdlDialog_
mlTextGetLineCoords 16-38
mdlDialog_mlTextGetLineRange

16-38
mdlDialog_mlTextInsertString
 16-38
mdlDialog_mlTextSetCursor 16-38
mdlDialog_mlTextSetInfo 16-38
mdlDialog_mlTextTopRowNumber

 16-38
mdlDialog_open 6-16, 15-11, 15-21
mdlDialog_openAlert C-10, C-12
mdlDialog_openInfoBox
 C-10, C-12
mdlDialog_openMessageBox
 C-10, C-12
mdlDialog_openModal 15-11
mdlDialog_openPalette 16-60
mdlDialog_optionButtonDeleteAll

16-25
mdlDialog_
optionButtonDeleteItem 16-25
mdlDialog_
optionButtonGetItemInfo 16-25
mdlDialog_
optionButtonGetNItems 16-25
mdlDialog_
optionButtonInsertItem 16-26
mdlDialog_
optionButtonSetEnabled 16-26
mdlDialog_
optionButtonSetItemInfo 16-25
mdlDialog_optionPDMItemGetInfo

 16-55

mdlDialog_optionPDMItemInsert
16-55

mdlDialog_
optionPDMItemSetEnabled 16-55
mdlDialog_optionPDMItemSetInfo

16-55
mdlDialog_overallTitleBarGet
C-9
mdlDialog_
publishComplexVariable A-28
mdlDialog_pushButtonActivate
 16-19
mdlDialog_pushButtonGetInfo
 16-20
mdlDialog_pushButtonSetCancel

16-20
mdlDialog_pushButtonSetDefault

16-20
mdlDialog_pushButtonSetInfo
 16-20
mdlDialog_scrollArrowDraw 16-28
mdlDialog_scrollBarGetInfo 16-28
mdlDialog_scrollBarSetInfo 16-28
mdlDialog_scrollBarSetRange
 16-28
mdlDialog_selectIconsByCmd
 16-65
mdlDialog_
selectIconsByCmdNoMsg 16-65
mdlDialog_selectIconsById 16-65
mdlDialog_selectIconsByIdNoMsg

16-65
mdlDialog_stringWidth A-41
mdlDialog_synonymsSynch 18-16
mdlDialog_textGetInfo 16-33
mdlDialog_textGetRange 16-33
mdlDialog_textPDMItemGetInfo

16-51
mdlDialog_textPDMItemIns 16-52
mdlDialog_textPDMItemInsert
 16-52
mdlDialog_
textPDMItemSetEnabled 16-52
mdlDialog_textPDMItemSetInfo

16-52
mdlDialog_textPDMItemSetLabel

16-52

mdlDialog_textPDMItemSetMark
16-52

mdlDialog_textSetInfo 16-33
mdlDialog_textSetRange 16-33
mdlDialog_toggleButtonGetInfo

16-16
mdlDialog_toggleButtonSetInfo
 16-16
mdlElmdscr_freeAll 8-4
mdlFile_setDefaultShare 12-2
mdlInput_waitForMessage 7-26
mdlOutput_error C-9
mdlOutput_printf A-48
mdlOutput_vprintf 12-2, A-48
mdlOutput_XXX Routines C-9
mdlParse_loadCommandTable
 6-15
mdlParse_loadKeywordTable 6-15
mdlParse_unloadTable 6-15
mdlResource_add 6-22, 6-35
mdlResource_closeFile 6-17
mdlResource_createFile 6-17
mdlResource_delete 6-12
mdlResource_directAdd 6-12
mdlResource_directAddComplete

6-12
mdlResource_load 6-12, 6-33, 6-34
mdlResource_loadFromStringList

A-44
mdlResource_openFile
 6-16, 6-33, 6-34, 15-20
mdlResource_queryFileHandle
 6-33
mdlResource_resize 6-12
mdlResource_write 6-12
mdlshare_allocTaskBlock 21-13
mdlStringList_create 16-77
mdlStringList_deleteMember 16-78
mdlStringList_insertMember 16-78
mdlStringList_setMember 16-78
mdlSystem_closeDesignFile 8-7
mdlSystem_createStartupElement

8-3
mdlSystem_enterGraphics 8-6
mdlSystem_exit 8-3
mdlSystem_getChar A-8
mdlSystem_getCurrMdlDesc 20-11
mdlSystem_getenv 12-2
i-10 MicroStation MDL Programmer’s Reference Guide

N

mdlSystem_loadMdlProgram
 8-2, 22-12
mdlSystem_newDesignFile 8-6, 8-7
mdlSystem_setFunction
 8-6, 12-1, 21-10
mdlText_
addStringsToModeDscrWide A-36
mdlText_compressStringWide A-36
mdlText_create A-29
mdlText_createWide
 A-28, A-29, A-36
mdlText_expandStringWide A-36
mdlText_extractStringWide A-36
mdlText_extractWide A-28, A-36
mdlTextMode_createWide A-36
mdlTextMode_
createWithStringsWide A-36
mdlTextMode_
extractStringFromDscrWide A-36
mdlTextMode_extractWide A-36
mdlWindow_close 8-6
mdlWindow_lineStyleSet 15-16
menu bar item see dialog box

items, menu bar item
Message Box Icons C-10

MSGBOX_ICON_CRITICAL
C-10
MSGBOX_ICON_
INFORMATION C-10
MSGBOX_ICON_QUESTION

C-10
MSGBOX_ICON_WARNING

C-10
Message Boxes C-10

DIALOGID_MsgBoxOK
 C-10
DIALOGID_MsgBoxOKCance

l C-10
DIALOGID_
MsgBoxYesNo C-10
DIALOGID_MsgBoxYesNoCa

ncel C-10
mdlDialog_openAlert C-10
mdlDialog_openInfoBox C-10
mdlDialog_openMessageBox

C-10

Message Files
see Messaging and Resource

Files
Message Handling C-9
message list resources 6-8
message lists 1-6, 1-10
message subsystem 6-14
MessageList 6-8
Messaging and Resource Files A-37
MicroCSL 1-3, C-4

data sharing concerns 1-3
Microsoft Word 10-2
MicroStation 95

AccuDraw C-6
macro capabilities C-4

MicroStation database server
Initapp example 22-13

MicroStation database servers
initapp, startup application
 22-12
mdlDB_activeDatabase 22-12
mdlSystem_loadMdlProgram

22-12
overview 22-12

MicroStation input loop 1-13
input queue 1-14

MicroStation Resource Manager
 6-16
MicroStation windows 15-6
MIF (Maker Interchange Format)

10-2
mif2s utility see on-line help
MIT X Consortium A-30
mlib utility 7-24

command line syntax 7-24
library file (.ml) 7-24
object files (.mo) 7-24
overview 7-24

mlink 1-11, 6-6, 7-24, 21-3
command line syntax 7-25
executable files 1-11
library files (.ml) 7-24
object files (.mo) 7-24
program files (.mp) 7-24

modal dialog boxes 15-9, 15-10
invoking 15-11
mdlDialog_open 15-11
mdlDialog_openModal 15-11

modeless dialog boxes 15-9, 15-10
MS_CODESET Environment
Variable A-6
MS_INITAPPS

stdin concerns 12-1
MS_INITAPPS applications 8-5

batch processing 8-7
overview 8-5

MS_INITAPPS environment
 variable 8-5
MSGBOX_ICON_CRITICAL
 C-10, C-12
MSGBOX_ICON_INFORMATION

C-10, C-12
MSGBOX_ICON_QUESTION
 C-10, C-12
MSGBOX_ICON_WARNING
 C-10, C-12
mswchar.fdf A-15
MSWideInt A-13
MSWideType A-13
multi-line text item see dialog box

items, multi-line text item

N
native code see DLM (Dynamic

Link Module), specific terms
noAnsiDeclaration see pragmas,

noAnsiDeclaration
noAnsiDeclOn

 see Pragma
Non-switched Function Calls 21-13
noReturnStatement see pragmas,

noReturnStatement 5-4
number space see hook functions
Numbered Argument Lists A-48

O
object files (.mo) 7-24
on-line help 2-2, 10-2

contents of 2-2
context-sensitive help tagging

10-9
creation of 10-2
creation of I/Help .s files 10-5
I/Help compiler 10-2
MicroStation MDL Programmer’s Reference Guide i-11

P

I/Help source files 10-2
MIF (Maker Interchange
 Format) 10-2
mif2s utility 10-5
mif2s utility, command line

syntax 10-5
reasons for 10-9
RTF (Rich Text Format) 10-2
rtf2s utility 10-5
rtf2s, command line syntax
 10-6
style sheets 10-2
templates, FrameMaker
 10-2, 10-9
templates, Microsoft Word
 10-2, 10-9

opaque pointers 17-3
option button item see dialog box

items, option button item
option pull-down menu see dialog

box items, option pull-down
menu

options pragma see pragmas,
 options
Output and Display A-29

Fonts A-29
messages A-29
output devices A-29
plotting and printing A-37
prompts A-29
text placement in design files

A-36
translated text A-29

P
packedLittleEndianData pragma

see pragmas, packedLittleEndi-
anData

Palettes 16-66
comparison to tool boxes
 16-66
conversion to tool boxes 16-74

Paths for Include Files dialog box
4-19

P-Code see pseudocode
Phar Lap DOS extender see DOS

interface functions

pixel units see dialog box
 coordinate system
pointerToNative pragma
 see pragmas

pointerToNative
poput menu item see dialog box

items, popup menu item
portability 6-27

binary portability 6-27
PostScript Fonts A-35
Pragma C-2

noAnsiDeclOn C-2
pragmas 5-2

alias 5-2
Ident 5-10
incompatiblePointerParame-

ters 5-4
incompatiblePointers 5-4
incompatibleReturn 5-4
noAnsiDeclaration 5-4
noReturnStatement 5-4
options 5-7
packedLittleEndianData 5-8
packLittleEndianData 6-31
pointerToNative 5-9
resourceID 5-9
suppressREQCmds 5-11
translate 5-12
undeclaredFunction 5-4
Version 5-13

primitive commands
 1-10, 1-12, 3-6, 3-7

input to 1-12
interaction with view
commands 1-10

printf 12-2
program file (.mp) 7-24
programs 8-1
project task list 3-3

application initialization logic
3-3

pseudocode 1-6
pseudo-code instructions see DLM

(Dynamic Link Module),
 specific terms
publishing 15-20

publishStructures 15-20

push button item see dialog box
item, push button item

putwc A-20
putwchar A-20
putws A-20

R
radio button item see dialog box

items, radio button item
Radix-50 A-38
Raster Font (X-Window BDF Font)

A-29
creating new raster fonts A-30

RawItemHdr structure 17-32
rcomp 6-3, 6-6

command line syntax
 7-16, 7-20
error detection 7-16
options 7-20
overview 6-6
undefined length structures
 6-3

RDE (Resource Development
 Environment) 4-1
recursive programming 11-4

debugging concerns 11-4
element descriptor example

11-4
element descriptors 11-4
recursive functions 11-4
stack usage 11-4

Resource C-3
resource class 6-5

message list resources 6-8
table resources 6-8

resource compiler see rcomp
resource declaration 6-3
Resource Development
 Environment

creation of example 4-20
limitations 4-22
modification of example 4-21
Tab Page item 16-110

Resource Development
i-12 MicroStation MDL Programmer’s Reference Guide

S

 Environment dialog box 4-17
File Menu 4-17
Options Menu 4-19
Resource Menu 4-18

Resource Files A-47, C-3
Asian text A-47
backwards compatibility C-3
compiling A-47
see Messaging and Resource

Files
resource ID 6-5
resource librarian 7-27, 15-7

overview 7-27
rlib utility 7-27

resource manager 1-3, 6-11, 15-7
creating new resources 6-11
deleting existing resources
 6-11, 6-12
mdlResource_openFile 15-20
updating existing resources
 6-11, 6-12

resource manager functions 6-11
resource source files 1-10

basic.r example 18-5
command tables 1-10, 2-1
dialog boxes 1-10, 2-2
icons 2-2
message lists 1-10
string lists 2-2
supportability of pointers
 6-4, 6-9
syntax of 6-3
uses of 1-10
variable sized arrays 6-5, 6-9

resource source generator 2-2
overview 2-2

resourceclass statement 6-3
syntax of 6-3

resourceID pragma see pragmas
resourceID

resources 6-1
compiling 7-19
creating 6-1, 6-6
dynamic resources see
 dynamic resources
example of 6-1, 6-4, 6-22
managing 6-1, 6-16
modifying 6-1, 6-9

overview 6-1
portability concerns 6-1, 6-27
resource file 15-7
resource IDS 15-7
resource IDs 15-7
resource manager 6-1
resource source generator 6-1
resource type 15-7
static resources
 see static resources
uses of 15-7
utilities 6-1

resources overview 6-1
advantages of 6-2
application specific resources

6-3
identification of resources 6-1
resources defined 6-1
syntax of resource source files

6-3
uses of 6-1

resources, applications accessing
of 6-16

resources, creation of 6-6
dynamic resource example 6-7
dynamic resources 6-6
static resource example 6-7
static resources 6-6

resources, management of
 6-13, 6-16

command parser 6-14
dialog box manager 6-16
message subsystem 6-14

resources, modification of 6-9
navigating about resources 6-9

rlib utility 6-6, 7-27
command line syntax 7-27

RscDirectAccess structure 6-12
rsctype utility 7-17, 15-10, 15-20

command line syntax 7-19
options 7-19
overview 7-17
predefined macros 7-18

RTF (Rich Text Format) 10-2
rtf2s utility see on-line help
RTYPE_DialogBox resource type

15-7
rules see bmake

S
sash item see dialog box items, sash

item
scale item see dialog box items,

scale item
scanf 12-2
scroll bar item see dialog box

items, scroll bar item
Scroll Bars 16-28
segread 23-4
separator item see dialog box

items, separator item
Server Natural Format A-30
SETLANG Utility

see Codeset Handler
setlocale A-15
showsnf A-33
sinkable dialog boxes 15-13
SNF

see Server Natural Format
Software Enhancement Stages

internationalization A-1
localization A-1

Source Files A-42
Special Characters A-9
Special Considerations

context sensitive characters
 A-2
direction of writing A-2

SQL database interface 22-1
architecture 22-1
communications 22-9
DatabaseService structure 22-2
DBTYPE resource see DB-

TYPE resource
descriptor message structure

22-9
environment variables see SQL

environment variables
session debug 22-10
SQL requests 22-2
toolkit 22-1
MicroStation MDL Programmer’s Reference Guide i-13

T

SQL environment variables
MS_DBASE 22-10
MS_DBDOUBLE 22-11
MS_DBEXT 22-10
MS_DBFLOAT 22-10
MS_LINKTYPE 22-11
MS_SERVER 22-10

state functions 1-10
events 1-10
primitive commands 1-10
viewing commands 1-10

state handlers see event driven
programming
state, dialog box item 15-9

external state 15-9, 15-12
internal value 15-9, 15-12
obtaining 15-9
setting 15-9
synchronization 15-9

static resources 6-7
defined 6-7

Status Bar C-7
stderr 12-1
stdin 12-1
stdlib.h A-14
stdout 12-1
strcat A-13
strcmp A-13
strcpy A-13
string formatting 12-2
string list editor 2-2, 4-1, 4-24

edit menu 4-26
file menu 4-25

string lists 2-2
creation of using string list
 editor 2-2

String Processing A-11
practices to avoid A-11
strings in Dialog Box Resource

files A-45
strings in program source files

A-44
untranslatable strings A-38
Wide Characters A-13

Strings in Dialog Box Resource
Files A-45

Strings in Program Source Files
 A-44

common mistakes A-44
strlen A-11
structure handling 5-14
strupr A-28
stub commands 3-6
style sheets see on-line help
suppressREQCmds pragma see

pragmas, suppressREQCmds
Switched Function Calls 21-13
swprintf A-20
swscanf A-20
synchronization 15-9, 15-12

example of 18-16
purpose of 15-12

synonym resources
 15-3, 15-12, 15-17

example of 15-12, 18-1, 18-9

T
Tab Page 16-113

item hook function messages
16-115

item list specification 16-113
item resource specification
 16-114

Tab Page item 16-110
tab page list resource 16-110
tab page resource 16-110
uses of 16-110

Tab Page list
item hook function messages

16-113
item list specification 16-110
item resource specification
 16-111

table identifier see command tables
table resources 6-8
Target Languages A-2
task 8-1
task ID 1-8, 8-1
task ID dispatcher 1-14
TCB (Terminal Control Block) 15-9
templates see on-line help

Testing
see Developing and Testing

text item see dialog box items, text
item

text pull-down menu see dialog
box items, text pull-down
menu

TextParam Structure A-37
TextParamWide Structure A-37
There 17-1
title bar see windows
toggle button item see dialog box

items
toggle button item see dialog but-

ton items, toggle button item
Tool Boxes 16-66

adding into icon command
frame 16-70

comparison to palettes 16-66
icon palette conversion 16-67
summary 16-73
tool decriptions 16-72
tool tips 16-72

tool palette see dialog box items,
tool palette

tool palette item see dialog box
items

towlower A-16
towupper A-16, A-28
translate pragma see pragmas,

translate
TrueType Fonts A-7, A-35, A-49
TSR (Terminate and Stay Resident)

1-3

U
undeclaredFunction see pragmas,

undeclaredFunction
undefined length structures 6-3
ungetwc A-20
Unicode A-6

creating Unicode fonts A-7
Untranslatable Strings A-38

cell names A-38
database column names A-38
MDL command names A-38

user interface 3-7
i-14 MicroStation MDL Programmer’s Reference Guide

V

userHook_allMdlUnload 21-14
userHook_dlmUnload 20-33
userHook_mdlUnload 20-33, 21-14
userHook_
sharedLibNoMoreClients 21-14
userpref.h A-33
userSystem_reloadProgram 8-3
userSystem_unloadProgram
 8-4, 12-1
ustation.rsc 4-1
ustnhelp.mde 2-3
utility commands 3-6, 3-7

V
Vector Fonts A-34

character mapping of A-34
common problems A-35
creating libraries for foreign

languages A-35
Version pragma see pragmas,
 Version
vfwprintf A-20
view commands 1-10

interaction with primitive
commands 1-10

View Window Icons 16-28
mdlView_getViewRectangle

16-28
mdlWindow_contentRectGet

Global 16-28
mdlWindow_
contentRectGetLocal 16-28

vswprintf A-20
vwprintf A-20

W
Warnings

 see MDL Compiler Warnings
wchar.h A-13
wchar_t

see Wide Characters
wcscat A-16, A-28
wcschr A-16
wcscmp A-16
wcscoll A-17
wcscpn A-16

wcscpy A-16, A-28
wcsftime A-19
wcslen A-16, A-28
wcsncat A-16
wcsncmp A-16
wcspbrk A-16
wcsrchr A-16
wcsspn A-16
wcsstr A-16, A-28
wcstod A-20
wcstok A-16
wcstol A-20
wcstombs A-14, A-16, A-28
wcstoul A-20
wcsxfrm A-17, A-19
wctomb A-14
wctype_t

see Wide Characters
Wide Character Functions
 A-3, A-15

case conversion functions
 A-16
character classification
 functions A-16
character collation functions

A-17
date functions A-19
I/O functions A-20
locale initialization A-15
number conversion functions

A-20
printing functions A-20
scanning functions A-20
string functions A-16
time functions A-19
Worldwide Portability
 Interfaces A-15

Wide Character Processing A-12
limitations A-20
locale A-12
overview A-12
performance considerations

A-21
Wide Character String Functions
 A-16

wcscat A-16
wcschr A-16
wcscpn A-16

wcscpy A-16
wcslen A-16
wcsncat A-16
wcsncmp A-16
wcspbrk A-16
wcsrchr A-16
wcsspn A-16
wcsstr A-16
wcstok A-16

Wide Characters A-13
data type A-13
declaration of A-13
String Format A-13
wchar_t A-13
wctype_t A-13
wint_t A-13

widechar.h A-13, A-16
windows 15-6

components of 15-6
defined 15-6
resizing 15-6

wint_t
see Wide Characters

Worldwide Portability Interfaces
see Wide Character Functions

wprintf A-20
wscanf A-20
WTF (Words To Follow) 11-1

X
X Windows A-30
XC see dialog box coordinate
 system

Y
YC see dialog box coordinate
system
MicroStation MDL Programmer’s Reference Guide i-15

i-16 MicroStation MDL Programmer’s Reference Guide

	Trademarks
	Copyrights
	Table of Contents
	MDL Overview
	MDE Workspace
	Design Methodology
	MDE Editing Tools
	A Comparison of MDL and C
	MicroStation Resources
	Building Applications
	Running MDL Applications
	Debugging MDL Applications
	Documentation
	Element Descriptors
	Standard C Functions
	MDL Built-In Variables
	Sample MDL Applications
	Dialog Box Manager Overview
	Standard Dialog Box Items
	Dialog Box Manager Hook Functions
	A Complete Example
	Dialog Box Style Guidelines
	Dynamic Link Modules
	MDL Shared Libraries
	Database Manipulation
	Low Level DOS Interface Functions (PC only)
	Internationalization
	Settings Manager
	MicroStation 95

	MDL Overview
	With MDL, You Can:
	MDL Fundamentals
	MDL Applications
	The MDL Runtime Environment
	Application Task Identifier
	MDL Development Utilities
	File Types
	MDL Application Organization
	MDL Examples

	MDE Workspace
	Tools Menu
	MDE On-line Help

	Design Methodology
	Where Do I Start?
	Designing a Dialog Box
	Implementing Command Processing
	Basic Application Architecture
	Recommended Directory Structure

	MDE Editing Tools
	MicroStation Development Environment
	Dialog Box Builder
	Icon Editor
	Resource Development Environment (RDE)
	String List Editor

	A Comparison of MDL and C
	Major Differences Between MDL and ANSI-C
	Pragmas
	Structure Layout
	Bitfield Handling

	MicroStation Resources
	MicroStation Resources
	An Overview of Resources
	Creating Resources
	Modifying Resources
	Managing Resources
	The MicroStation Resource Manager
	A Resource Programming Example
	Binary Portability
	Resource Source Generator
	Resource Utility Programs

	Building Applications
	Building Application Process
	Creating a Makefile and Using the bmake Utility
	Compiling an Application Command Table
	Generating Resource Files from C Type Definitions
	Compiling Resources
	Compiling MDL Applications
	Using the MDL Librarian
	Linking MDL Applications

	Running MDL Applications
	Relationships Between Terms
	Loading an MDL Program
	Unloading an MDL Program
	Using Commands in MDL Tasks
	Aborting an MDL Task
	Using MS_INITAPPS Applications

	Debugging MDL Applications
	Debugging
	Debugger Input & Output
	How the Debugger Finds Source Code
	Using C Expressions With the Debugger
	Debugger Commands
	Memory Debugging
	Automatic Fault Reporting

	Documentation
	Useful Documentation
	Development Methods

	Element Descriptors
	Element Descriptors

	Standard C Functions
	ANSI Standard Functions

	MDL Built-In Variables
	Variables

	Sample MDL Applications
	Examples
	dlogdemo MDL Example
	chngtxt MDL Example

	Dialog Box Manager Overview
	Overview
	Features
	Dialog Box Manager Basic Concepts
	Referencing Application Variables from Resource Fi...
	Dialog Box Manager Header Files
	The Dialog Box Manager Library
	Creating A Dialog Box
	Dialog Box Manager Sample Programs

	Standard Dialog Box Items
	Structured Items
	DialogBoxRsc Structure
	DialogItemRsc Structure
	Common Item Resource Fields
	Label Item
	Group Box Item
	Separator Item
	Toggle Button Item
	Push Button Item
	Scroll Bar Item
	Text Item
	Multi-line Text Item
	Color Picker Item
	Level Map Item
	Menu Bar Item
	Text Pull-down Menu
	Option Pull-down Menu
	Color Picker Pull-down Menu
	Tool Palettes
	Generic Item
	Button Group Items
	Sash Item
	Scale Item
	Popup Menu Item
	Radio Button Item
	Tab Page Item
	Tab Page List
	Tab Page
	Combo Box Item
	SpinBox Item

	Dialog Box Manager Hook Functions
	Hook Functions
	Item Hook Function Messages

	A Complete Example
	MDL Applications
	The basic.ma application
	The resource file: basic.r
	The source code file: basic.mc
	The command table file: basiccmd.r
	The command number header file: basiccmd.h
	The type definition file: basictyp.mt
	The message file: basicmsg.r
	The application makefile: basic.mke

	Dialog Box Style Guidelines
	Design Small Dialog Boxes
	Debugging Hook Functions

	Dynamic Link Modules
	Overview
	Access to MicroStation’s Built-ins From DLMs
	Linking an MDL Program With a DLM
	Runtime Concerns
	Function Pointers as Parameters to Built-in Functi...
	Calling Custom MDL Functions
	Determining When an MDL Program is Unloaded
	Application-Specific Resources versus System Resou...
	Dynamic Link Specification Source Files
	Additional Include Files
	Platform Specifics
	DLM Functions

	MDL Shared Libraries
	Difference
	Overview
	Creating an MDL Shared Library
	Linking an MDL Program with an MDL Shared Library
	Unloading an MDL Shared Library
	Determining When an MDL Program is Unloaded
	Defining the Shared Functions and Variables

	Database Manipulation
	SQL Database Interface Toolkit

	Low Level DOS Interface Functions (PC only)
	MDL and DOS
	Character Encoding Methods
	Data Input
	String Processing
	Display and Output
	Messages and Resource Files
	Recommended Reading
	Creating Settings Manager Files
	Adding Functionality to ascgroup.ma
	Platform Changes
	MDL Compiler

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

